cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A114275 Numbers k such that k^2 + 12 is prime.

Original entry on oeis.org

1, 5, 7, 13, 19, 23, 29, 35, 37, 41, 43, 47, 55, 61, 85, 89, 91, 97, 113, 119, 121, 127, 139, 161, 167, 169, 175, 187, 191, 197, 203, 211, 215, 223, 229, 245, 265, 271, 295, 299, 307, 317, 335, 341, 355, 371, 379, 383, 401, 419, 427, 455, 463, 475, 491, 517, 527
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), this sequence (i=12).

Programs

A114271 Numbers k such that k^2 + 8 is prime.

Original entry on oeis.org

3, 9, 15, 21, 33, 51, 57, 81, 87, 111, 117, 123, 129, 135, 141, 147, 153, 177, 189, 213, 219, 255, 279, 285, 315, 321, 327, 345, 351, 363, 399, 417, 465, 471, 477, 483, 495, 549, 579, 585, 627, 657, 663, 669, 723, 735, 741, 747, 759, 771, 783, 789, 807, 825
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), this sequence (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

A113536 Numbers k such that k^2 + 13 is prime.

Original entry on oeis.org

0, 2, 4, 10, 12, 16, 18, 28, 40, 42, 44, 46, 60, 68, 72, 82, 84, 88, 94, 108, 110, 114, 116, 122, 126, 142, 144, 152, 158, 180, 192, 194, 198, 200, 220, 222, 264, 266, 268, 282, 284, 296, 298, 332, 336, 340, 354, 378, 380, 418, 420, 430, 434, 446, 464, 466, 486
Offset: 1

Views

Author

Zak Seidov, Jan 13 2006

Keywords

Examples

			If n=40 then n^2 + 13 = 1613 (prime), so 40 is in the sequence.
		

Crossrefs

Other cases: A005574 k=1, A067201 k=2, A049422 k=3, A007591 k=4, A078402 k=5, A114269-A114275 k=6-12.

Programs

  • Mathematica
    With[{k=13}, Select[Range[1000], PrimeQ[ #^2+k]&]]
  • PARI
    is(n)=isprime(n^2+13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Edited by R. J. Mathar, Aug 07 2008

A242331 Numbers k such that k^2 + 3 is a semiprime.

Original entry on oeis.org

1, 6, 16, 18, 20, 24, 26, 32, 34, 36, 40, 44, 46, 48, 56, 60, 66, 68, 78, 80, 88, 98, 100, 102, 104, 108, 116, 118, 120, 128, 136, 148, 152, 164, 170, 174, 176, 182, 188, 190, 192, 196, 200, 204, 212, 220, 226, 232, 234, 238, 246, 250, 252, 258, 260, 262, 266
Offset: 1

Views

Author

Vincenzo Librandi, May 14 2014

Keywords

Comments

The semiprimes of this form are: 4, 39, 259, 327, 403, 579, 679, 1027, 1159, 1299, 1603, 1939, 2119, 2307, 3139, 3603, 4359, 4627, ...

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [0..300] | IsSemiprime(s) where s is n^2+3];
  • Mathematica
    Select[Range[300], PrimeOmega[#^2 + 3] == 2 &]

A121982 Numbers k such that k^2 + 15 is prime.

Original entry on oeis.org

2, 4, 8, 14, 16, 22, 26, 32, 34, 38, 44, 46, 52, 64, 68, 76, 86, 88, 98, 104, 106, 124, 134, 158, 172, 178, 184, 196, 202, 206, 212, 236, 238, 242, 248, 256, 262, 272, 284, 296, 298, 304, 316, 322, 326, 328, 338, 356, 362, 364, 374, 386, 388, 394, 398, 452, 472
Offset: 1

Author

Parthasarathy Nambi, Sep 09 2006

Keywords

Examples

			If k=104 then k^2 + 15 = 10831 (prime).
		

Programs

A080149 Numbers k such that k^2 + 1 and k^2 + 3 are both prime.

Original entry on oeis.org

2, 4, 10, 14, 74, 94, 130, 134, 146, 160, 230, 256, 326, 340, 350, 406, 430, 440, 470, 584, 634, 686, 700, 704, 784, 860, 920, 986, 1054, 1070, 1156, 1210, 1324, 1340, 1354, 1366, 1394, 1420, 1456, 1460, 1564, 1700, 1784, 1816, 1876, 2006, 2080, 2096, 2174
Offset: 1

Author

T. D. Noe, Jan 30 2003

Keywords

Comments

Hardy and Littlewood conjecture that this sequence is infinite. This sequence is the intersection of A005574 (k such that k^2 + 1 is prime) and A049422 (k such that k^2 + 3 is prime).
From Jacques Tramu, Sep 10 2018: (Start)
a(10000) = 2473624; C = 2.91596513
a(100000) = 35866246; C = 2.70591741
a(1000000) = 483764726; C = 2.53454683
a(2000000) = 1049178316; C = 2.49209641
a(3000000) = 1647417724; C = 2.46880647
a(4000000) = 2267125384; C = 2.45259161
a(5000000) = 2903162576; C = 2.44036006
a(6000000) = 3551848640; C = 2.43024082
a(7000000) = 4212006124; C = 2.42214552
a(8000000) = 4881390700; C = 2.41510010
a(9000000) = 5559542740; C = 2.40915933
a(10000000) = 6245573750; C = 2.40405768
a(20000000) = 13393786900; C = 2.36959294
a(30000000) = 20908970800; C = 2.35131696
a(40000000) = 28659267134; C = 2.33835867
a(50000000) = 36590858294; C = 2.32865934
C is the quotient a(n) / (n * log(n) * log(n)). (End)

Examples

			10 is in this sequence because 101 and 103 are both prime.
		

References

  • P. Ribenboim, "The New Book of Prime Number Records," Springer-Verlag, 1996, p. 408.

Crossrefs

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[m^2+1]&&PrimeQ[m^2+3], AppendTo[lst, m]], {m, 3000}]; lst
    okQ[n_]:=Module[{n2=n^2},PrimeQ[n2+1]&&PrimeQ[n2+3]]; Select[Range[2200], okQ]  (* Harvey P. Dale, Apr 21 2011 *)
    Select[Range[2500],AllTrue[#^2+{1,3},PrimeQ]&] (* Harvey P. Dale, Sep 07 2023 *)
  • PARI
    isA080149(n) = isprime(n^2+1) && isprime(n^2+3) \\ Michael B. Porter, Mar 22 2010

Formula

Conjecture: a(n) is asymptotic to c*n*log(n)^2 with c around 2.9... - Benoit Cloitre, Apr 16 2004

A121250 Numbers n such that n^2 + 14 is prime.

Original entry on oeis.org

3, 15, 27, 33, 45, 75, 87, 93, 165, 183, 195, 207, 243, 285, 297, 303, 345, 363, 375, 405, 435, 453, 495, 513, 537, 573, 585, 615, 627, 633, 657, 663, 717, 813, 843, 975, 1053, 1065, 1083, 1095, 1125, 1137, 1167, 1203, 1287, 1317, 1335, 1353, 1413, 1437, 1455
Offset: 1

Author

Parthasarathy Nambi, Sep 06 2006

Keywords

Examples

			If n=183 then n^2 + 14 = 33503 (prime).
		

Programs

A182238 n^2 + {1,3,7} are primes.

Original entry on oeis.org

2, 4, 10, 74, 146, 256, 440, 470, 584, 920, 1070, 1156, 1324, 1394, 1420, 2080, 2470, 2600, 3326, 3746, 4796, 5996, 6460, 7160, 7466, 8894, 9164, 9554, 9596, 10490, 10970, 11204, 11246, 11336, 11374, 12314, 12386, 13394, 14290, 15586, 16250, 16330, 17060
Offset: 1

Author

Zak Seidov, Apr 20 2012

Keywords

Comments

Under Schinzel's hypothesis H, this sequence is infinite. - Charles R Greathouse IV, Apr 23 2012

Examples

			2^2+{1,3,7}= {5,7,11} all prime, 4^2+{1,3,7}= {17,19,23} all prime.
		

Crossrefs

Intersection of A005574, A049422, A114270.

Programs

  • PARI
    { forstep ( n=2, 10^6, 2,
        ns = n * n;
        if ( ! isprime( ns+1 ), next() );
        if ( ! isprime( ns+3 ), next() );
        if ( ! isprime( ns+7 ), next() );
        print1(n, ", ");
    ); }
    /* Joerg Arndt, Apr 22 2012 */

A153975 Values of n such that n^2-3 and n^2+3 are both prime.

Original entry on oeis.org

4, 8, 10, 14, 64, 92, 112, 140, 146, 172, 218, 298, 304, 322, 326, 340, 350, 356, 416, 440, 470, 508, 554, 560, 580, 626, 634, 652, 668, 686, 694, 704, 728, 736, 746, 770, 806, 818, 868, 892, 920, 1054, 1082, 1102, 1130, 1156, 1196, 1256, 1264, 1378, 1418
Offset: 1

Author

Keywords

Comments

Intersection of A028873 and A049422. - Zak Seidov, Oct 12 2014

Examples

			4^2 - 3 = 13 and 4^2 + 3 = 19 are both primes, so 4 is in the sequence.
		

Programs

  • Magma
    [n: n in [1..1400] | IsPrime(n^2-3) and IsPrime(n^2+3)]; // Vincenzo Librandi, Oct 12 2014
    
  • Mathematica
    Select[Range[1500], PrimeQ[#^2 - 3] && PrimeQ[#^2 + 3] &] (* Vincenzo Librandi, Oct 12 2014 *)
  • PARI
    is(n) = isprime(n^2-3) && isprime(n^2+3); \\ Altug Alkan, Sep 01 2016

Extensions

Incorrect term 0 removed and Mma edited by Zak Seidov, Oct 12 2014

A122062 Numbers k such that k^2 + 16 is prime.

Original entry on oeis.org

1, 5, 9, 11, 15, 21, 25, 29, 31, 41, 49, 51, 55, 65, 75, 79, 81, 89, 91, 95, 99, 109, 115, 119, 121, 125, 129, 151, 165, 179, 191, 211, 219, 221, 229, 231, 245, 249, 265, 275, 281, 289, 291, 295, 299, 301, 311, 315, 335, 351, 355, 361, 365, 369, 381, 389, 391
Offset: 1

Author

Parthasarathy Nambi, Sep 14 2006

Keywords

Examples

			If k=99 then k^2 + 16 = 9817 (prime).
		

Programs

Previous Showing 11-20 of 28 results. Next