cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A156071 Concatenation chain arising in A156069.

Original entry on oeis.org

3, 38, 381, 3816, 38165, 381654, 3816547, 38165472, 381654729
Offset: 1

Views

Author

Keywords

Comments

a(9) is a zeroless pandigital number in base 10, with 9 digits such that every k-digit substring ( 1 <= k <= 9 ) taken from the left, is divisible by k (see A163574). - Michel Marcus, Dec 01 2013

References

  • Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.

Crossrefs

A230959 If n is pandigital then 0 else (digits not occurring in decimal representation of n, arranged in decreasing order).

Original entry on oeis.org

987654321, 987654320, 987654310, 987654210, 987653210, 987643210, 987543210, 986543210, 976543210, 876543210, 98765432, 987654320, 98765430, 98765420, 98765320, 98764320, 98754320, 98654320, 97654320, 87654320, 98765431, 98765430, 987654310, 98765410
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 02 2013

Keywords

Comments

a(0) > a(n) for n > 0;
a(A171102(n)) = 0 by definition, but also a(A050289(n)) = 0.

Crossrefs

Cf. A227362.

Programs

  • Haskell
    import Data.List ((\\))
    a230959 n = (if null cds then 0 else read cds) :: Integer
       where cds = "9876543210" \\ show n
    
  • Mathematica
    pd[n_]:=Module[{idn=Sort[IntegerDigits[n]]},If[idn==Range[0,9],0,FromDigits[ Reverse[ Complement[ Range[ 0,9],idn]]]]]; Table[pd[n],{n,0,30}] (* Harvey P. Dale, Nov 16 2023 *)
  • Python
    def A230959(n): return int(''.join(sorted(set('9876543210')-set(str(n)),reverse=True)) or 0) # Chai Wah Wu, Nov 23 2022

A234812 Primes p of the form n + 987654321 where 987654321 is the largest zeroless pandigital number.

Original entry on oeis.org

987654323, 987654337, 987654347, 987654359, 987654361, 987654377, 987654379, 987654383, 987654419, 987654439, 987654443, 987654461, 987654463, 987654467, 987654511, 987654539, 987654581, 987654583, 987654601, 987654607, 987654611, 987654673, 987654677, 987654791
Offset: 1

Views

Author

K. D. Bajpai, Apr 19 2014

Keywords

Examples

			987654323 is a prime and appears in the sequence because 987654323 = 2 + 987654321.
987654337 is a prime and appears in the sequence because 987654337 = 16 + 987654321.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a; a:=n+987654321; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    Select[Table[k + 987654321, {k,1,1000}], PrimeQ]
    c=0; a=n+987654321; Do[If[PrimeQ[a], c=c+1; Print[c," ",a]], {n,0,200000}] (* b-file *)

A034306 Palindromes P such that Fibonacci iterations starting with (1, P) lead to a "nine digits anagram".

Original entry on oeis.org

4004, 630036, 1559551, 4187814, 4870784, 6097906, 6834386, 9530359, 50755705, 51733715, 54988945, 62399326, 62488426, 63299236, 63477436, 64288246, 64377346, 71399317, 71488417, 73199137, 73466437, 74188147, 74366347, 81299218, 81477418, 82199128, 82466428, 84177148, 84266248
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Comments

A "nine digit anagram" is a (so-called restricted zeroless pandigital) number whose digits are a permutation of [1..9], i.e., one of the first 9! terms of A050289.
In total there are exactly 68 such palindromes, 437606734 is the largest.

Examples

			Denote by F(1,P) the Fibonacci type sequence x(n+1) = x(n) + x(n-1) with x(0) = 1, x(1) = P.
Then for P = a(8) = 9530359, F(1,P) = (1, 9530359, 9530360, 19060719, 28591079, 47651798, 76242877, 123894675, ...) where a 9-digits anagram has occurred.
		

Crossrefs

Cf. A002113 (palindromes), A050289 (zeroless pandigital numbers).
Cf. A034587 (all starting values leading to 9-digit anagrams), A034588 (subset of primes), A034589 (subset of lucky numbers).

Programs

Formula

Intersection of A034587 and A002113 (palindromes). - M. F. Hasler, Jan 08 2020

Extensions

Edited by M. F. Hasler, Jan 09 2020

A034587 Fibonacci iteration starting with (1, a(n)) leads to a "nine digits anagram".

Original entry on oeis.org

718, 1790, 1993, 2061, 2259, 3888, 3960, 4004, 4396, 5093, 5832, 7031, 7310, 7712, 8039, 8955, 9236, 11598, 11742, 12312, 13295, 15095, 15432, 16044, 16355, 16472, 18109, 18559, 19144, 19950, 19968, 20116, 20180, 20494, 21170, 21376, 21998
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Comments

By "nine digits anagram" the author means a number whose digits are a permutation of {1, ..., 9}. These are more commonly known as restricted zeroless pandigital numbers and form the first 9! terms of A050289.
The largest term is a(750767) = 987654320.
More generally, the last N = 9! - 158323 = 204557 (> 56% of 9!) terms are given as A050289(k)-1 with indices k = 9!-N+1, ..., 9!. Indeed, a number > (987654321-1)/2 = 493827160 is a term if and only if it equals a "9-digit anagram" minus 1, since all results beyond the first iteration (1 + n = n+1) will be too large. Since 493827165 = A050289(158324) > 493827160, starting with a(546211) = 493827164 the terms are given by A050289(158324 .. 9!) - 1, for a total of 546211 + N - 1 = 750767 terms. (The term 493827164 is preceded by 493827160 (which yields 987654321 but is not in A050289 - 1) and 493827155 = A050289(158323) - 1.) - M. F. Hasler, Jan 07 2020
The ratio between consecutive terms in a Fibonacci sequence x(n+1) = x(n) + x(n-1) tends quickly to the golden ratio Phi = (sqrt(5)+1)/2 = A001622. We can tell whether a starting value N is in this sequence or not from the terms between 123456789 and 987654321 ~ 1e9. From N*Phi^k = 1e9 we get k = log(1e9/N)/log(Phi) ~ 43 - 2*log(N) for the maximum (and 3 less for the minimum) number of required iterations. - M. F. Hasler, Jan 06 2020

Examples

			Denote by F(a,b) the Fibonacci-type sequence x(n+1) = x(n) + x(n-1) starting with x(0) = a, x(1) = b.
Then F(1,21998) = (1, 21998, 21999, 43997, 65996, 109993, 175989, 285982, 461971, 747953, 1209924, 1957877, 3167801, 5125678, 8293479, 13419157, 21712636, 35131793, 56844429, 91976222, 148820651, 240796873, 389617524, ...) where a nine-digits anagram has been reached.
The growth is roughly linear in three parts, with a slope of 700 up to a(292967) = 206993812, then an average slope of 1130 before it rises to (9.87e8 - 4.94e8)/2.05e5 ~ 2400 for 546211 <= n <= 750767 (cf. formula & comments): a(100) = 71960, a(200) = 149540, a(500) = 351868, a(1000) = 649921, a(2000) = 1400539, a(5000) = 3209798, a(10^4) = 6595301, a(2e4) = 13351498, a(5e4) = 32441506, a(10^5) = 67090523, a(2e5) = 134759627, a(3e5) = 214973567, a(4e5) = 327136594, a(5e5) = 439256717. - _M. F. Hasler_, Jan 07 2020
		

Crossrefs

Subsequences: A034588 (primes), A034589 (lucky numbers), A034306 (palindromes).

Programs

  • PARI
    A034587=select( {is_A034587(n,s=1,L=[1..9])=while( 123456789 > n=s+s=n,); n<1e9 && until( 987654321 < n=s+s=n, Set(digits(n))==L&&return(n))}, [1..22222]) \\ Function is_A034587 returns the 9-digit anagram if one is reached; null == false == 0 else.
    nxt_A034587(n)={until(is_A034587(n+=1),);n} \\ Returns next larger term
    A034587(n)={if(n>546210, A050289(n-387887)-1, #A034587>=n, A034587[n], A034587=concat( A034587, vector(n-#A034587,i, n=nxt_A034587(if(i>1,n,A034587[#A034587])))); n)} \\ Uses the two functions above. Could use Vecsmall(...) in definition of A034587 and vectorsmall in A034587(n) to reduce memory.
    \\ M. F. Hasler, Jan 06 2020 and Jan 07 2020
    
  • Python
    def ok(n):
        f, g = n, n+1
        while g < 10**9:
            if g > 123456788 and "".join(sorted(str(g))) == "123456789":
                return True
            f, g = g, f+g
        return False
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Feb 18 2024

Formula

a(n) = A050289(m) with n = 387887 + m for 158324 <= m <= 9! or 546211 <= n <= 750767 = total number of terms in this sequence. - M. F. Hasler, Jan 07 2020

Extensions

Edited and offset changed to 1 by M. F. Hasler, Jan 06 2020
Results confirmed by Giovanni Resta, Jan 07 2020

A034588 Primes p such that the Fibonacci iterations starting with (1, p) lead to a "nine digits anagram".

Original entry on oeis.org

1993, 8039, 22303, 30013, 31727, 46559, 50207, 63617, 65437, 72617, 83813, 92077, 101869, 102013, 109717, 131479, 136897, 141413, 145283, 156139, 162257, 163771, 204487, 206951, 207301, 209669, 211369, 221587, 221719, 225133, 225349, 233419
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Comments

A "nine digits anagram" is a number whose digits are a permutation of {1, ..., 9}, or one of the first 9! terms of A050289.
Largest term is a(46494) = 987653411.
Subset of primes in A034587. There are 767 (resp. 2982, resp. 6045) primes among the first 10^4 (resp. 5*10^4, resp. 10^5) terms of A034587, and (0, 1, 14, 129, 1566) terms among the first (100, 10^3, 10^4, 10^5, 10^6) primes, the last of which is 15480869 = prime(999708). - M. F. Hasler, Jan 06 2020
The terms larger than 987654320/2 = 493827160 are primes of the form A050289(k)-1 with 158324 <= k <= 9!, cf. A034587. There are exactly 13005 of these which are therefore the last 13005 terms of this sequence, starting with 493851671 = A050289(158332)-1 = prime(26048750). - M. F. Hasler, Jan 09 2020
The graph of this sequence has a distinct slope for values below, between, and above the two limits of 2.07e8 and 4.94e8, as for the graph of A034587 (cf. link). - M. F. Hasler, Jan 11 2020

Examples

			Starting with (1, 233419), Fibonacci iterations x(n+1) = x(n) + x(n-1) yield the sequence (1, 233419, 233420, 466839, 700259, 1167098, 1867357, 3034455, 4901812, 7936267, 12838079, 20774346, 33612425, 54386771, 87999196, 142385967, ...) where a nine-digits anagram is reached.
		

Crossrefs

Cf. A034587 (full sequence), A034589 (lucky numbers), A034306 (palindromes).

Programs

Formula

Intersection of A000040 and A034587.

Extensions

Edited and offset changed to 1 by M. F. Hasler, Jan 06 2020

A034589 Lucky numbers N (A000959) such that Fibonacci iterations starting with (1, N) lead to a "nine digits anagram".

Original entry on oeis.org

8955, 24405, 30013, 59325, 62025, 71493, 72123, 76885, 85461, 92077, 99165, 106185, 109717, 112251, 119077, 148773, 153007, 155077, 163771, 163803, 196797, 211369, 221137, 223365, 227119, 228271, 228631
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Comments

"Nine digits anagram" is a number whose digits are a permutation of {1, ..., 9}, also called restricted zeroless pandigital number. These are listed as the first 9! terms of A050289. - M. F. Hasler, Jan 10 2020

Examples

			Denote by F(1, N) the Fibonacci sequence x(k+1) = x(k) + x(k-1) starting with x(0) = 1, x(1) = N.
Then for N = 228631, F(1, N) = (1, 228631, 228632, 457263, 685895, 1143158, 1829053, 2972211, 4801264, 7773475, 12574739, 20348214, 32922953, 53271167, 86194120, 139465287, ...), where a nine-digits anagram has been reached.
		

Crossrefs

Cf. A000959 (lucky numbers), A050289 (zeroless pandigital numbers).
Cf. A034587 (all starting values leading to 9-digit anagrams), A034588 (subset of primes), A034306 (subset of palindromes).

Programs

Formula

Intersection of A000959 (lucky numbers) and A034587. - M. F. Hasler, Jan 10 2020

Extensions

Name, example & crossrefs edited, offset changed to 1 by M. F. Hasler, Jan 06 2020

A235640 Primes p of the form n^2 + 1234567890 where 1234567890 is the first pandigital number with digits in order.

Original entry on oeis.org

1234567891, 1234568059, 1234569571, 1234574779, 1234576171, 1234579771, 1234592539, 1234595779, 1234609099, 1234625011, 1234625971, 1234634971, 1234647979, 1234669651, 1234692499, 1234743451, 1234753651, 1234769491, 1234780411, 1234900819, 1234948579
Offset: 1

Views

Author

K. D. Bajpai, Apr 20 2014

Keywords

Examples

			1234567891 is a prime and appears in the sequence because 1234567891 = 1^2 + 1234567890.
1234568059 is a prime and appears in the sequence because 1234568059 = 13^2 + 1234567890.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a; a:=n^2+1234567890; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..2000);
  • Mathematica
    Select[Table[k^2+1234567890,{k,1,2000}],PrimeQ]
    c=0; a=n^2+1234567890; Do[If[PrimeQ[a],c=c+1; Print[c," ",a]], {n,0,200000}]  (*b-file*)

A248350 Numbers n such that 10^n - 123456789 is prime.

Original entry on oeis.org

9, 10, 13, 19, 26, 68, 73, 115, 190, 195, 232, 549, 742, 1502, 2239, 2618, 5143, 8081, 9442, 31402, 77919, 93790, 99434, 120841
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

a(26) > 200000. - Robert Price, Jun 06 2020

Crossrefs

Programs

  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n - 123456789),print1(n,", ")))

Extensions

a(21)-a(25) from Robert Price, Feb 26 2020

A248351 Numbers k such that 10^k + 987654321 is prime.

Original entry on oeis.org

6, 11, 15, 27, 42, 113, 135, 186, 207, 503, 2999, 3005, 3487, 5718, 7265, 7629, 11987, 16063, 27379, 64770, 73579, 96504, 116557
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

Note that 987654321 is the largest pandigital number in base-10, omitting 0.

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(10^n+987654321)]; // Vincenzo Librandi, Oct 12 2014
  • Mathematica
    Select[Range[1000], PrimeQ[10^# + 987654321] &] (* Vincenzo Librandi, Oct 12 2014 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n+987654321),print1(n,", ")))
    

Extensions

a(9) corrected and a(19)-a(23) added by Robert Price, Dec 05 2019
Previous Showing 11-20 of 47 results. Next