A156071
Concatenation chain arising in A156069.
Original entry on oeis.org
3, 38, 381, 3816, 38165, 381654, 3816547, 38165472, 381654729
Offset: 1
- Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
A230959
If n is pandigital then 0 else (digits not occurring in decimal representation of n, arranged in decreasing order).
Original entry on oeis.org
987654321, 987654320, 987654310, 987654210, 987653210, 987643210, 987543210, 986543210, 976543210, 876543210, 98765432, 987654320, 98765430, 98765420, 98765320, 98764320, 98754320, 98654320, 97654320, 87654320, 98765431, 98765430, 987654310, 98765410
Offset: 0
-
import Data.List ((\\))
a230959 n = (if null cds then 0 else read cds) :: Integer
where cds = "9876543210" \\ show n
-
pd[n_]:=Module[{idn=Sort[IntegerDigits[n]]},If[idn==Range[0,9],0,FromDigits[ Reverse[ Complement[ Range[ 0,9],idn]]]]]; Table[pd[n],{n,0,30}] (* Harvey P. Dale, Nov 16 2023 *)
-
def A230959(n): return int(''.join(sorted(set('9876543210')-set(str(n)),reverse=True)) or 0) # Chai Wah Wu, Nov 23 2022
A234812
Primes p of the form n + 987654321 where 987654321 is the largest zeroless pandigital number.
Original entry on oeis.org
987654323, 987654337, 987654347, 987654359, 987654361, 987654377, 987654379, 987654383, 987654419, 987654439, 987654443, 987654461, 987654463, 987654467, 987654511, 987654539, 987654581, 987654583, 987654601, 987654607, 987654611, 987654673, 987654677, 987654791
Offset: 1
987654323 is a prime and appears in the sequence because 987654323 = 2 + 987654321.
987654337 is a prime and appears in the sequence because 987654337 = 16 + 987654321.
-
KD := proc() local a; a:=n+987654321; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
-
Select[Table[k + 987654321, {k,1,1000}], PrimeQ]
c=0; a=n+987654321; Do[If[PrimeQ[a], c=c+1; Print[c," ",a]], {n,0,200000}] (* b-file *)
A034306
Palindromes P such that Fibonacci iterations starting with (1, P) lead to a "nine digits anagram".
Original entry on oeis.org
4004, 630036, 1559551, 4187814, 4870784, 6097906, 6834386, 9530359, 50755705, 51733715, 54988945, 62399326, 62488426, 63299236, 63477436, 64288246, 64377346, 71399317, 71488417, 73199137, 73466437, 74188147, 74366347, 81299218, 81477418, 82199128, 82466428, 84177148, 84266248
Offset: 1
Denote by F(1,P) the Fibonacci type sequence x(n+1) = x(n) + x(n-1) with x(0) = 1, x(1) = P.
Then for P = a(8) = 9530359, F(1,P) = (1, 9530359, 9530360, 19060719, 28591079, 47651798, 76242877, 123894675, ...) where a 9-digits anagram has occurred.
Cf.
A034587 (all starting values leading to 9-digit anagrams),
A034588 (subset of primes),
A034589 (subset of lucky numbers).
A034587
Fibonacci iteration starting with (1, a(n)) leads to a "nine digits anagram".
Original entry on oeis.org
718, 1790, 1993, 2061, 2259, 3888, 3960, 4004, 4396, 5093, 5832, 7031, 7310, 7712, 8039, 8955, 9236, 11598, 11742, 12312, 13295, 15095, 15432, 16044, 16355, 16472, 18109, 18559, 19144, 19950, 19968, 20116, 20180, 20494, 21170, 21376, 21998
Offset: 1
Denote by F(a,b) the Fibonacci-type sequence x(n+1) = x(n) + x(n-1) starting with x(0) = a, x(1) = b.
Then F(1,21998) = (1, 21998, 21999, 43997, 65996, 109993, 175989, 285982, 461971, 747953, 1209924, 1957877, 3167801, 5125678, 8293479, 13419157, 21712636, 35131793, 56844429, 91976222, 148820651, 240796873, 389617524, ...) where a nine-digits anagram has been reached.
The growth is roughly linear in three parts, with a slope of 700 up to a(292967) = 206993812, then an average slope of 1130 before it rises to (9.87e8 - 4.94e8)/2.05e5 ~ 2400 for 546211 <= n <= 750767 (cf. formula & comments): a(100) = 71960, a(200) = 149540, a(500) = 351868, a(1000) = 649921, a(2000) = 1400539, a(5000) = 3209798, a(10^4) = 6595301, a(2e4) = 13351498, a(5e4) = 32441506, a(10^5) = 67090523, a(2e5) = 134759627, a(3e5) = 214973567, a(4e5) = 327136594, a(5e5) = 439256717. - _M. F. Hasler_, Jan 07 2020
- M. F. Hasler, Table of n, a(n) for n = 1..10000, Jan 06 2020. (Full list of 750767 terms is available on request.)
- Patrick De Geest, Nine Digits Digressions
- M. F. Hasler, Graph of A034587, n = 1..750767 (full sequence), Jan 10 2020
- M. F. Hasler, Slope of A034587, averaged over n +- 10 sqrt(n), Jan 10 2020
-
A034587=select( {is_A034587(n,s=1,L=[1..9])=while( 123456789 > n=s+s=n,); n<1e9 && until( 987654321 < n=s+s=n, Set(digits(n))==L&&return(n))}, [1..22222]) \\ Function is_A034587 returns the 9-digit anagram if one is reached; null == false == 0 else.
nxt_A034587(n)={until(is_A034587(n+=1),);n} \\ Returns next larger term
A034587(n)={if(n>546210, A050289(n-387887)-1, #A034587>=n, A034587[n], A034587=concat( A034587, vector(n-#A034587,i, n=nxt_A034587(if(i>1,n,A034587[#A034587])))); n)} \\ Uses the two functions above. Could use Vecsmall(...) in definition of A034587 and vectorsmall in A034587(n) to reduce memory.
\\ M. F. Hasler, Jan 06 2020 and Jan 07 2020
-
def ok(n):
f, g = n, n+1
while g < 10**9:
if g > 123456788 and "".join(sorted(str(g))) == "123456789":
return True
f, g = g, f+g
return False
print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Feb 18 2024
A034588
Primes p such that the Fibonacci iterations starting with (1, p) lead to a "nine digits anagram".
Original entry on oeis.org
1993, 8039, 22303, 30013, 31727, 46559, 50207, 63617, 65437, 72617, 83813, 92077, 101869, 102013, 109717, 131479, 136897, 141413, 145283, 156139, 162257, 163771, 204487, 206951, 207301, 209669, 211369, 221587, 221719, 225133, 225349, 233419
Offset: 1
Starting with (1, 233419), Fibonacci iterations x(n+1) = x(n) + x(n-1) yield the sequence (1, 233419, 233420, 466839, 700259, 1167098, 1867357, 3034455, 4901812, 7936267, 12838079, 20774346, 33612425, 54386771, 87999196, 142385967, ...) where a nine-digits anagram is reached.
A034589
Lucky numbers N (A000959) such that Fibonacci iterations starting with (1, N) lead to a "nine digits anagram".
Original entry on oeis.org
8955, 24405, 30013, 59325, 62025, 71493, 72123, 76885, 85461, 92077, 99165, 106185, 109717, 112251, 119077, 148773, 153007, 155077, 163771, 163803, 196797, 211369, 221137, 223365, 227119, 228271, 228631
Offset: 1
Denote by F(1, N) the Fibonacci sequence x(k+1) = x(k) + x(k-1) starting with x(0) = 1, x(1) = N.
Then for N = 228631, F(1, N) = (1, 228631, 228632, 457263, 685895, 1143158, 1829053, 2972211, 4801264, 7773475, 12574739, 20348214, 32922953, 53271167, 86194120, 139465287, ...), where a nine-digits anagram has been reached.
Cf.
A034587 (all starting values leading to 9-digit anagrams),
A034588 (subset of primes),
A034306 (subset of palindromes).
Name, example & crossrefs edited, offset changed to 1 by
M. F. Hasler, Jan 06 2020
A235640
Primes p of the form n^2 + 1234567890 where 1234567890 is the first pandigital number with digits in order.
Original entry on oeis.org
1234567891, 1234568059, 1234569571, 1234574779, 1234576171, 1234579771, 1234592539, 1234595779, 1234609099, 1234625011, 1234625971, 1234634971, 1234647979, 1234669651, 1234692499, 1234743451, 1234753651, 1234769491, 1234780411, 1234900819, 1234948579
Offset: 1
1234567891 is a prime and appears in the sequence because 1234567891 = 1^2 + 1234567890.
1234568059 is a prime and appears in the sequence because 1234568059 = 13^2 + 1234567890.
-
KD := proc() local a; a:=n^2+1234567890; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..2000);
-
Select[Table[k^2+1234567890,{k,1,2000}],PrimeQ]
c=0; a=n^2+1234567890; Do[If[PrimeQ[a],c=c+1; Print[c," ",a]], {n,0,200000}] (*b-file*)
A248350
Numbers n such that 10^n - 123456789 is prime.
Original entry on oeis.org
9, 10, 13, 19, 26, 68, 73, 115, 190, 195, 232, 549, 742, 1502, 2239, 2618, 5143, 8081, 9442, 31402, 77919, 93790, 99434, 120841
Offset: 1
-
for(n=1,10^4,if(ispseudoprime(10^n - 123456789),print1(n,", ")))
A248351
Numbers k such that 10^k + 987654321 is prime.
Original entry on oeis.org
6, 11, 15, 27, 42, 113, 135, 186, 207, 503, 2999, 3005, 3487, 5718, 7265, 7629, 11987, 16063, 27379, 64770, 73579, 96504, 116557
Offset: 1
-
[n: n in [1..500] | IsPrime(10^n+987654321)]; // Vincenzo Librandi, Oct 12 2014
-
Select[Range[1000], PrimeQ[10^# + 987654321] &] (* Vincenzo Librandi, Oct 12 2014 *)
-
for(n=1,10^4,if(ispseudoprime(10^n+987654321),print1(n,", ")))
a(9) corrected and a(19)-a(23) added by
Robert Price, Dec 05 2019
Comments