cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A238749 Exponents of third Mersenne prime pair: numbers n such that 2^n - 5 and 5*2^n - 1 are both prime.

Original entry on oeis.org

4, 8, 10, 12, 18, 32
Offset: 1

Views

Author

Keywords

Comments

a(7) > 350028.
Intersection of A059608 and A001770.
Exponents of Mersenne prime pairs {2^n - (2k + 1), (2k + 1)*2^n - 1}:
for k = 0: 2, 3, 5, 7, 13, 17, ... Intersection of A000043 and A000043
for k = 1: 3, 4, 6, 94, ... Intersection of A050414 and A002235
for k = 2: 4, 8, 10, 12, 18, 32, ... Intersection of A059608 and A001770
for k = 3: Intersection of A059609 and A001771
for k = 4: 21, ... Intersection of A059610 and A002236
for k = 5: Intersection of A096817 and A001772
for k = 6: Intersection of A096818 and A001773
for k = 7: 5, 10, 14, ... Intersection of A059612 and A002237
for k = 8: 6, 16, 20, 36, ... Intersection of A059611 and A001774
for k = 9: 5, 21, ... Intersection of A096819 and A001775
for k = 10: 7, 13, ... Intersection of A096820 and A002238
for k = 11: 6, 8, 12, ...
for k = 12: 9, ...
for k = 13: 5, 8, 10, ...
for k = 14:

Examples

			a(1) = 4 because 2^4 - 5 = 11 and 5*2^4 - 1 = 79 are both primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | IsPrime(2^n-5) and IsPrime(5*2^n-1)]; // Vincenzo Librandi, May 17 2015
  • Mathematica
    fQ[n_] := PrimeQ[2^n - 5] && PrimeQ[5*2^n - 1]; k = 1; While[ k < 15001, If[fQ@ k, Print@ k]; k++] (* Robert G. Wilson v, Mar 05 2014 *)
    Select[Range[1000], PrimeQ[2^# - 5] && PrimeQ[5 2^# - 1] &] (* Vincenzo Librandi, May 17 2015 *)
  • PARI
    isok(n) = isprime(2^n - 5) && isprime(5*2^n - 1); \\ Michel Marcus, Mar 04 2014
    

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A321353 Numbers k such that 3*2^k - 25 is prime.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 12, 13, 16, 17, 18, 21, 23, 29, 31, 33, 35, 36, 41, 58, 63, 66, 69, 82, 96, 99, 148, 157, 175, 196, 241, 267, 349, 394, 404, 414, 435, 456, 485, 498, 537, 548, 584, 715, 727, 765, 929, 1007, 1076, 1399, 1619, 1652, 1715, 2758, 3039, 3131, 3773, 3822, 5001
Offset: 1

Views

Author

Gilbert Mozzo, Nov 07 2018

Keywords

Comments

Appears (at least initially) to contain more primes that the analogous sequences for 2^k-1 or 2^k-3. Compare the comment of Paul Bourdelais in A050414.

Examples

			7 is a term, because 3*2^7 - 25 = 359 is prime.
		

Crossrefs

Cf. A050414.

Programs

  • Mathematica
    Select[Range[100], PrimeQ[3 2^# - 25] &]
  • PARI
    for(n=0, 2000, if(ispseudoprime(p=3*2^n-25), print1(n, ", ")));

A329103 Numbers k such that both k^2 - 3 and 2^k - 3 are primes.

Original entry on oeis.org

4, 10, 14, 20, 266, 452, 694
Offset: 1

Views

Author

Alex Ratushnyak, Nov 04 2019

Keywords

Comments

a(8) > 2086750, using A050414. - Michael S. Branicky, Feb 16 2024

Crossrefs

Intersection of A050414 and A028873.

Programs

  • PARI
    isok(k) = isprime(k^2 - 3) && isprime(2^k - 3); \\ Michel Marcus, Jul 02 2021

A331487 Primes p such that exactly one of 2^(p+1) - 3 and 2^(p+1) + 3 is a prime.

Original entry on oeis.org

13, 17, 19, 23, 29, 83, 149, 173, 227, 389, 1109, 4001, 35753, 36551, 363119, 702193
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 18 2020

Keywords

Comments

Primes p such that exactly one of k*2^p - 2*k + 1 and k*2^p + 2*k - 1 is a prime:
k = 1: odd terms in A000043;
k = 2: this sequence;
k = 3: 5, 13, 19, 29, 31, 109, 139, 271, 379, 1553, ...
k = 4: 2, 37, ...
k = 5: 3, 5, 7, 17, 19, 23, 41, 61, 67, 151, 157, 313, 4111, 6337, ...
k = 6: 2, 5, 7, 11, 19, 29, 149, 191, 373, 449, 983, 1667, 1973, ...
k = 7: 2, 3, 5, 7, 11, 13, 29, 43, 61, 97, 109, 127, 131, 239, 461, 1153, ...
k = 8: 3, 11, 19, 23, 29, 37, 43, 97, 193, 307, 617, 1847, ...
k = 9: 3, 5, 23, 41, 61, 71, 97, 131, 157, 863, 3119, ...
k = 10: 2, 3, 13, ...
...

Examples

			13 is in this sequence because 2^(13+1) - 3 = 16381 (prime) and 2^(13+1) + 3 = 16387 (composite number).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | not (#[k: k in [2] | IsPrime(k*2^p-2*k+1)]) eq (#[k: k in [2] | IsPrime(k*2^p+2*k-1)])];
    
  • Mathematica
    Select[Range[400], PrimeQ[#] && Xor @@ PrimeQ[2^(# + 1) + {-3, 3}] &] (* Amiram Eldar, Jan 19 2020 *)
  • PARI
    isok(p) = isprime(2*2^p-3) + isprime(2*2^p+3) == 1;
    forprime(p=2, 500, if(isok(p), print1(p, ", "))); \\ Jinyuan Wang, Jan 19 2020

Extensions

a(12)-a(16) added using A050414 and A057732 by Jinyuan Wang, May 15 2020

A379020 Numbers k such that 2^k - 25 is prime.

Original entry on oeis.org

5, 7, 9, 13, 33, 37, 57, 63, 93, 127, 129, 165, 189, 369, 717, 3079, 3087, 3925, 6709, 7633, 18001, 21961, 55557, 60415, 63589, 69463, 75949, 98265, 212295, 416773, 647545, 824325, 1538959, 2020893, 2421175
Offset: 1

Views

Author

Boyan Hu, Dec 13 2024

Keywords

Comments

Except for a(1), all terms are congruent to 1 or 3 mod 6.
a(36) > 3400000. - Boyan Hu, Jun 16 2025

Examples

			7 is in the sequence because 2^7-25=103 is prime.
8 is not in the sequence because 2^8-25=231=3*7*11 is not prime.
		

Crossrefs

Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29).
Except for a(1), subsequence of A047241.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^n - 25 ], Print[ n ] ], { n, 1, 15000} ]
  • PARI
    is(n)=ispseudoprime(2^n-25)

Extensions

a(1)=5 inserted by Max Alekseyev, May 28 2025

A174272 Exactly one of 2^n-3 and 2^n+3 is prime.

Original entry on oeis.org

1, 2, 5, 7, 9, 10, 14, 15, 16, 18, 20, 22, 24, 28, 29, 30, 55, 67, 84, 94, 116, 122, 150, 174, 213, 221, 228, 233, 266, 336, 390, 452, 545, 689, 694, 784, 850, 1110, 1704, 1736, 2008, 2139, 2191, 2321, 2367, 2370, 3237, 3954, 4002, 4060, 4062, 4552, 5547, 5630
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 14 2010

Keywords

Comments

Numbers n which are in A050414 or in A057732 but not in both. [From R. J. Mathar, Mar 29 2010]

Examples

			a(1)=1 because 2^1-3=-1 is nonprime and 2^1+3=5 is prime.
		

Crossrefs

Extensions

Corrected by Charles R Greathouse IV, Mar 20 2010

A192542 Numbers n such that the interval [2^n-n, 2^n] is prime-free.

Original entry on oeis.org

15, 25, 27, 28, 30, 34, 38, 40, 43, 45, 47, 48, 49, 51, 53, 55, 60, 71, 72, 75, 88, 97, 99, 106, 113, 117, 126, 128, 132, 139, 145, 146, 148, 151, 154, 168, 169, 175, 176, 177, 185, 186, 192, 208, 216, 223, 227, 232, 240, 253, 259
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 03 2011

Keywords

Comments

Places n where A192064(n)=0.
The numbers not in the sequence are characterized in A000043, A050414, A059608, A059610, etc.

Crossrefs

Cf. A192064.

Programs

Extensions

Corrected (a(16)=55 inserted) by Harvey P. Dale, Apr 08 2013

A267943 Numbers n such that 2^n - 3 and 3*2^n - 1 are both prime.

Original entry on oeis.org

3, 4, 6, 94
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 22 2016

Keywords

Comments

The intersection of A002235 and A050414 is not empty (3 does not belong to A267985).

Examples

			a(3) = 6 because 2^6 - 3 = 61 and 3*2^6 - 1 = 191 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..94] | IsPrime(2^n-3) and IsPrime(3*2^n-1)];
    
  • PARI
    isok(n) = isprime(2^n-3) && isprime(3*2^n-1);

Formula

A002235 INTERSECT A050414.

A321356 Primes of the form 3*2^k - 25.

Original entry on oeis.org

23, 71, 167, 359, 743, 1511, 12263, 24551, 196583, 393191, 786407, 6291431, 25165799, 1610612711, 6442450919, 25769803751, 103079215079, 206158430183, 6597069766631, 864691128455135207, 27670116110564327399, 221360928884514619367, 1770887431076116955111
Offset: 1

Views

Author

Gilbert Mozzo, Nov 07 2018

Keywords

Crossrefs

Cf. A050414, A321353 (k values).

Programs

  • Mathematica
    Select[3*2^Range[4,100]-25 , PrimeQ] (* Amiram Eldar, Nov 15 2018 *)
  • PARI
    for(n=0,20, if(ispseudoprime(p=3*2^n-25), print1(p, ", ")))

Extensions

More terms from Amiram Eldar, Nov 15 2018
Previous Showing 31-40 of 43 results. Next