cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A050460 a(n) = Sum_{d|n, n/d=1 mod 4} d.

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 11, 12, 14, 14, 18, 16, 18, 20, 19, 24, 22, 22, 23, 24, 31, 28, 30, 28, 30, 36, 31, 32, 34, 36, 42, 40, 38, 38, 42, 48, 42, 44, 43, 44, 60, 46, 47, 48, 50, 62, 54, 56, 54, 60, 66, 56, 58, 60, 59, 72, 62, 62, 73, 64, 84, 68
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Not multiplicative: a(3)*a(7) <> a(21), for example.

Crossrefs

Programs

  • Maple
    A050460 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if (n/d) mod 4 = 1 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050460(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#&]; Array[a, 70] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=sumdiv(n,d,if(n/d%4==1,d)) \\ Charles R Greathouse IV, Dec 04 2013

Formula

G.f.: Sum_{n>0} n*x^n/(1-x^(4*n)). - Vladeta Jovovic, Nov 14 2002
G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(4*k-3))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050464(n).
a(n) = A050469(n) + A050464(n).
a(n) = (A002131(n) + A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A222183. (End)

A284098 a(n) = Sum_{d|n, d == 1 (mod 6)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 14, 8, 1, 1, 1, 1, 20, 1, 8, 1, 1, 1, 26, 14, 1, 8, 1, 1, 32, 1, 1, 1, 8, 1, 38, 20, 14, 1, 1, 8, 44, 1, 1, 1, 1, 1, 57, 26, 1, 14, 1, 1, 56, 8, 20, 1, 1, 1, 62, 32, 8, 1, 14, 1, 68, 1, 1, 8, 1, 1, 74, 38, 26, 20, 8, 14, 80, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), this sequence (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 6] == 1, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 6)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%6==1]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=0} (6*k + 1)*x^(6*k+1)/(1 - x^(6*k+1)). - Ilya Gutkovskiy, Mar 21 2017
G.f.: Sum_{n >= 1} x^n*(1 + 5*x^(6*n))/(1 - x^(6*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/72 = 0.137077... (A086729). - Amiram Eldar, Nov 26 2023

A284100 a(n) = Sum_{d|n, d == 1 (mod 8)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 18, 10, 1, 1, 1, 1, 1, 1, 26, 1, 10, 1, 1, 1, 1, 1, 34, 18, 1, 10, 1, 1, 1, 1, 42, 1, 1, 1, 10, 1, 1, 1, 50, 26, 18, 1, 1, 10, 1, 1, 58, 1, 1, 1, 1, 1, 10, 1, 66, 34, 1, 18, 1, 1, 1, 10, 74, 1, 26, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. A277090.
Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), this sequence (k=8).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 8] == 1, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,8]==1&]],{n,80}] (* or *) Table[DivisorSum[n,#&,Mod[#,8]==1&],{n,80}] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(Mod(d, 8)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%8==1]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=0} (8*k + 1)*x^(8*k+1)/(1 - x^(8*k+1)). - Ilya Gutkovskiy, Mar 21 2017
G.f.: Sum_{n >= 1} x^n*(1 + 7*x^(8*n))/(1 - x^(8*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/96 = 0.102808... . - Amiram Eldar, Nov 26 2023

A284313 Expansion of Product_{k>=0} (1 - x^(4*k+1)) in powers of x.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 2, -1, 0, -1, 2, -1, 0, -1, 3, -2, 0, -1, 3, -3, 1, -1, 4, -4, 1, -1, 4, -5, 2, -1, 5, -7, 3, -1, 5, -8, 5, -2, 6, -10, 6, -2, 6, -12, 9, -3, 7, -14, 11, -4, 7, -16, 15, -6, 8, -19, 18, -8, 9, -21, 23, -11, 10, -24
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(m*k+1)): A081362 (m=2), A284312 (m=3), this sequence (m=4), A284314 (m=5).

Programs

  • Maple
    V:= Vector(100):
    V[1]:= 1:
    for k from 0 to 24 do
      V[4*k+2..100]:= V[4*k+2..100] - V[1..99-4*k]
    od:
    convert(V,list); # Robert Israel, May 03 2017
  • Mathematica
    CoefficientList[Series[Product[1 - x^(4k + 1), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(4*k + 1)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} A050449(k)*a(n-k), a(0) = 1.
O.g.f.: Sum_{n >= 0} (-1)^n*x^(n*(2*n-1)) / Product_{k = 1..n} ( 1 - x^(4*k) ). Cf. A284316. - Peter Bala, Nov 28 2020

A363903 Expansion of Sum_{k>0} x^k / (1 - x^(4*k))^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 5, 1, 3, 1, 6, 4, 1, 3, 7, 1, 1, 1, 10, 5, 4, 1, 9, 3, 1, 1, 10, 6, 3, 4, 11, 1, 5, 3, 12, 7, 1, 1, 18, 1, 1, 1, 14, 10, 6, 5, 15, 4, 3, 1, 16, 9, 1, 3, 17, 1, 10, 1, 24, 10, 1, 6, 19, 3, 1, 4, 20, 11, 10, 1, 21, 5, 1, 3, 25, 12, 1, 7, 30, 1, 9, 1, 24, 18, 5, 1, 25, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 3 &, Mod[#, 4] == 1 &]/4; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%4==1)*(d+3))/4;

Formula

a(n) = (1/4) * Sum_{d|n, d==1 mod 4} (d+3) = (3 * A001826(n) + A050449(n))/4.
G.f.: Sum_{k>0} k * x^(4*k-3) / (1 - x^(4*k-3)).

A082052 Sum of divisors of n that are not of the form 4k+1.

Original entry on oeis.org

0, 2, 3, 6, 0, 11, 7, 14, 3, 12, 11, 27, 0, 23, 18, 30, 0, 29, 19, 36, 10, 35, 23, 59, 0, 28, 30, 55, 0, 66, 31, 62, 14, 36, 42, 81, 0, 59, 42, 84, 0, 74, 43, 83, 18, 71, 47, 123, 7, 62, 54, 84, 0, 110, 66, 119, 22, 60, 59, 162, 0, 95, 73, 126, 0, 110, 67, 108, 26, 138, 71
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Comments

a(A004613(n))=0.

Crossrefs

Programs

  • Mathematica
    sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 1) / 4]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
    Table[DivisorSum[n,#&,(!IntegerQ[(#-1)/4]&)],{n,80}] (* Harvey P. Dale, Nov 30 2019 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%4!=1,d))","))

Formula

G.f.: Sum_{k>=1} x^(2*k)*(2 + 3*x^k + 4*x^(2*k) + 2*x^(4*k) + x^(5*k))/(1 - x^(4*k))^2. - Ilya Gutkovskiy, Sep 12 2019

A293901 Sum of proper divisors of n of the form 4k+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 10, 1, 6, 1, 1, 1, 1, 6, 14, 10, 1, 1, 6, 1, 1, 1, 18, 6, 10, 1, 1, 14, 6, 1, 22, 1, 1, 15, 1, 1, 1, 1, 31, 18, 14, 1, 10, 6, 1, 1, 30, 1, 6, 1, 1, 31, 1, 19, 34, 1, 18, 1, 6, 1, 10, 1, 38, 31, 1, 1, 14, 1, 6, 10, 42, 1, 22, 23, 1, 30, 1, 1, 60, 14, 1, 1, 1, 6, 1, 1, 50, 43, 31, 1, 18, 1, 14, 27
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 27 2023 *)
  • PARI
    A293901(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, d
a(n) = A091570(n) - A293903(n).
G.f.: Sum_{k>=1} (4*k-3) * x^(8*k-6) / (1 - x^(4*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 - 1/8 = 0.0806167... . - Amiram Eldar, Nov 27 2023

A050448 a(n) = Sum_{d|n, d==1 (mod 4)} d^4.

Original entry on oeis.org

1, 1, 1, 1, 626, 1, 1, 1, 6562, 626, 1, 1, 28562, 1, 626, 1, 83522, 6562, 1, 626, 194482, 1, 1, 1, 391251, 28562, 6562, 1, 707282, 626, 1, 1, 1185922, 83522, 626, 6562, 1874162, 1, 28562, 626, 2825762, 194482, 1, 1, 4107812, 1, 1, 1
Offset: 1

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^4 &, Mod[#, 4] == 1 &]; Array[a, 50] (* Amiram Eldar, Jul 08 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d%4)==1, d^4)); \\ Michel Marcus, Aug 16 2021

Extensions

Offset corrected by Sean A. Irvine, Aug 15 2021

A082053 Sum of divisors of n that are not of the form 4k+3.

Original entry on oeis.org

1, 3, 1, 7, 6, 9, 1, 15, 10, 18, 1, 25, 14, 17, 6, 31, 18, 36, 1, 42, 22, 25, 1, 57, 31, 42, 10, 49, 30, 54, 1, 63, 34, 54, 6, 88, 38, 41, 14, 90, 42, 86, 1, 73, 60, 49, 1, 121, 50, 93, 18, 98, 54, 90, 6, 113, 58, 90, 1, 150, 62, 65, 31, 127, 84, 130, 1, 126, 70, 102, 1, 192
Offset: 1

Author

Ralf Stephan, Apr 02 2003

Keywords

Comments

a(A002145(n))=1.

Programs

  • Mathematica
    sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 3) / 4]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%4!=3,d))","))

Formula

G.f.: Sum_{k>=1} x^k*(1 + 2*x^k + 4*x^(3*k) + 3*x^(4*k) + 2*x^(5*k))/(1 - x^(4*k))^2. - Ilya Gutkovskiy, Sep 12 2019

A357912 a(n) = Sum_{d|n, d==1 (mod 11)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 35, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 46, 24, 1, 13, 1, 1, 1, 1, 1, 1, 1, 57, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 68, 35, 24, 1, 1, 13, 1, 1, 1, 1, 1, 79, 1, 1, 1, 1, 1, 13, 1
Offset: 1

Author

Seiichi Manyama, Jan 17 2023

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8), this sequence (k=11).
Cf. A357911.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[#, 11] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (Mod(d, 11)==1)*d);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=0, N, (11*k+1)*x^(11*k+1)/(1-x^(11*k+1))))

Formula

G.f.: Sum_{k>=0} (11*k+1) * x^(11*k+1)/(1 - x^(11*k+1)).
Previous Showing 11-20 of 23 results. Next