cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A132817 Decimal expansion of Sum_{n >= 1} 1/6^prime(n).

Original entry on oeis.org

0, 3, 2, 5, 3, 9, 5, 8, 3, 3, 0, 8, 5, 2, 5, 5, 4, 4, 0, 4, 9, 2, 6, 0, 0, 5, 0, 7, 8, 1, 2, 7, 4, 1, 8, 1, 1, 9, 2, 9, 8, 6, 0, 7, 6, 6, 1, 7, 5, 7, 8, 0, 9, 8, 8, 8, 7, 6, 6, 4, 6, 1, 0, 0, 9, 9, 0, 7, 6, 7, 7, 3, 8, 3, 1, 3, 0, 3, 9, 1, 5, 1, 6, 3, 3, 8, 8, 0, 9, 3, 4, 8, 0, 6, 3, 5, 4, 1
Offset: 0

Views

Author

Cino Hilliard, Nov 17 2007

Keywords

Comments

Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-6 expansion. - M. F. Hasler, Jul 05 2017

Examples

			0.032539583308525544049260050781274181192986076617578098887664610099...
		

Crossrefs

Cf. A000720, A051006 (analog for base 2), A132800 (analog for base 3), A132806 (analog for base 4), A132797 (analog for base 5), A132822 (analog for base 7), A010051 (characteristic function of the primes), A000040 (the primes).

Programs

  • Mathematica
    Join[{0}, RealDigits[FromDigits[{{Table[If[PrimeQ[n], 1, 0], {n, 370}]}, 0}, 6], 10, 111][[1]]] (* Vincenzo Librandi, Jul 05 2017 *)
  • PARI
    /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,n, print1(eval(a[j])",") ) }
    
  • PARI
    suminf(n=1, 1/6^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 04 2017

Formula

Equals 5 * Sum_{k>=1} pi(k)/6^(k+1), where pi(k) = A000720(k). - Amiram Eldar, Aug 11 2020

Extensions

Offset corrected R. J. Mathar, Jan 26 2009
Edited by M. F. Hasler, Jul 05 2017

A132822 Decimal expansion of Sum_{n >= 1} 1/7^prime(n).

Original entry on oeis.org

0, 2, 3, 3, 8, 4, 3, 2, 8, 9, 6, 0, 3, 5, 3, 7, 3, 9, 9, 0, 9, 8, 5, 9, 8, 2, 2, 4, 9, 5, 9, 1, 2, 3, 7, 3, 4, 8, 9, 3, 4, 0, 9, 3, 5, 9, 3, 5, 9, 4, 4, 8, 6, 9, 6, 1, 9, 9, 8, 2, 8, 8, 4, 6, 5, 6, 5, 2, 3, 5, 6, 8, 2, 7, 5, 4, 6, 8, 0, 5, 1, 2, 1, 2, 1, 3, 6, 2, 1, 8, 6, 3, 1, 0, 7, 6, 2, 7
Offset: 0

Views

Author

Cino Hilliard, Nov 17 2007

Keywords

Comments

Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-7 expansion. - M. F. Hasler, Jul 05 2017

Examples

			0.023384328960353739909859822495912373489340935935944869619982884656523568...
		

Crossrefs

Cf. A000720, A051006 (analog for base 2), A132800 (analog for base 3), A132806 (analog for base 4), A132797 (analog for base 5), A132817 (analog for base 6), A010051 (characteristic function of the primes), A132799 (base 8), A269327.

Programs

  • PARI
    /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,n, print1(eval(a[j])",") ) }
    
  • PARI
    suminf(n=1, 1/7^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 05 2017

Formula

From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} 1/A269327(k).
Equals 6 * Sum_{k>=1} pi(k)/7^(k+1), where pi(k) = A000720(k). (End)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009
Edited by M. F. Hasler, Jul 05 2017

A121240 Numerator of sum_{k=1..n} 1/2^prime(k).

Original entry on oeis.org

1, 3, 13, 53, 849, 3397, 54353, 217413, 3478609, 222630977, 890523909, 56993530177, 911896482833, 3647585931333, 58361374901329, 3735127993685057, 239048191595843649, 956192766383374597, 61196337048535974209
Offset: 1

Views

Author

Alexander Adamchuk, Aug 22 2006

Keywords

Comments

a(n) is prime for n = {2, 3, 4, 10, 21, 321,..} where it takes the values {3, 13, 53, 222630977, ...}.
The prime constant A051006 = 0.414682509.. is limit(n->infinity) a(n)/2^prime(n) .

Crossrefs

Cf. A034785 (denominators), A072762, A051006, A010051.

Programs

  • Mathematica
    Table[Numerator[Sum[1/2^Prime[k],{k,1,n}]],{n,1,30}]
    Accumulate[1/2^Prime[Range[30]]]//Numerator (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n) = Numerator[ Sum[ 1/2^Prime[k], {k,1,n} ] ]. a(n) = A072762[ Prime[n] ].

A275306 Decimal expansion of 1/2 - Sum_{k>=1} 1/2^prime(k).

Original entry on oeis.org

0, 8, 5, 3, 1, 7, 4, 9, 0, 1, 4, 8, 8, 8, 8, 3, 3, 9, 7, 5, 1, 8, 9, 0, 3, 7, 7, 8, 4, 5, 6, 9, 2, 2, 9, 1, 6, 3, 4, 2, 2, 5, 7, 6, 1, 8, 6, 2, 0, 8, 3, 0, 2, 2, 1, 3, 1, 7, 5, 4, 5, 8, 5, 5, 1, 1, 3, 5, 9, 0, 3, 9, 3, 8, 0, 6, 4, 2, 6, 6, 5, 8, 0, 3, 7, 0, 9, 9, 5, 1, 5, 7, 1, 5, 2, 4, 2, 2, 2, 0, 6, 0, 3, 8, 3, 8, 4, 0, 6, 4, 7, 9, 1, 7, 0, 1, 4, 0, 4, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 22 2016

Keywords

Comments

Composite constant: decimal value of A066247 interpreted as a binary number.
The characteristic function of composite numbers (A066247) has values 0, 0, 0, 1, 0, 1, 0, 1, 1, ... for n = 1, 2, 3, ... The constant obtained by concatenating these digits and interpreting them as a binary fraction is therefore C = 0.0001010111010... (base 2) = 0.0853174901...(base 10).
Continued fraction [0; 11, 1, 2, 1, 1, 2, 1, 1, 131, 2, 1, 1, 2, 6, 4, 2, 21, ...].

Examples

			0.0853174901... = (0.00010101110...)_2.
                        | | |||
                        4 6 8910
		

Crossrefs

Programs

  • Mathematica
    nn = 121; Take[#, nn] &@ PadLeft[First@ #, Abs@ Last@ # + Length@ First@ #] &@ RealDigits@ N[1/2 - Sum[ 1/2^Prime[k], {k, 10^4}], nn + 2] (* Michael De Vlieger, Jul 22 2016 *)
  • PARI
    s=.5; forprime(p=2,bitprecision(s)+2, s-=1.>>p); s \\ Charles R Greathouse IV, Jul 22 2016

Formula

Equals Sum_{k>=1} 1/2^A002808(k).
From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} 1/A073718(k).
Equals Sum_{k>=1} A066247(k)/2^k.
Equals -(1/2) + Sum_{k>=1} A062298(k)/2^(k+1). (End)
Equals Sum_{k >= 1} ((-1)^A010051(k))/2^(k+1). - Antonio GraciĆ” Llorente, Jan 13 2024

A333182 Decimal expansion of Sum_{k>=1} mu(k)^2 / 2^k.

Original entry on oeis.org

9, 3, 1, 3, 7, 6, 3, 5, 6, 3, 8, 3, 1, 3, 3, 5, 8, 1, 8, 4, 9, 9, 0, 4, 8, 7, 1, 2, 6, 1, 3, 8, 9, 2, 9, 4, 8, 5, 7, 2, 4, 5, 5, 6, 1, 1, 1, 4, 4, 5, 1, 6, 8, 2, 9, 8, 1, 2, 4, 6, 7, 7, 0, 4, 5, 9, 9, 5, 7, 0, 3, 0, 9, 5, 8, 9, 4, 2, 8, 4, 9, 0, 7, 4, 2, 5, 1, 4, 9, 6, 3, 2, 0, 7, 6, 7, 8, 9, 0, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2020

Keywords

Comments

Squarefree constant: binary expansion is the characteristic function of squarefree numbers (A008966).

Examples

			0.93137635638313358... = (0.1110111001...)_2.
                            ||| |||  |
                            123 567 10
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[MoebiusMu[n]^2/2^n, {n, 1, 500}], 10, 100][[1]] (* Amiram Eldar, Jun 22 2020 *)

Formula

Equals Sum_{k>=1} mu(k)/(2^(k^2) - 1). - Amiram Eldar, Jun 22 2020

A370596 Numbers k such that A007814(k) is a prime number.

Original entry on oeis.org

4, 8, 12, 20, 24, 28, 32, 36, 40, 44, 52, 56, 60, 68, 72, 76, 84, 88, 92, 96, 100, 104, 108, 116, 120, 124, 128, 132, 136, 140, 148, 152, 156, 160, 164, 168, 172, 180, 184, 188, 196, 200, 204, 212, 216, 220, 224, 228, 232, 236, 244, 248, 252, 260, 264, 268, 276
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2024

Keywords

Comments

Numbers whose binary representation has a prime number of trailing 0's.
a(n)-1 is the sequence of numbers whose binary representation has a prime number of trailing 1's.
Numbers of the form (2^(p+1))*k + 2^p = 2^p * (2*k + 1), where p is prime and k >= 0.
All the terms are divisible by 4.
The asymptotic density of this sequence is Sum_{p prime} 1/2^(p+1) = 0.20734125492555583012... = A051006 / 2.

Crossrefs

Subsequences: A017113, A051062.

Programs

  • Mathematica
    Select[Range[300], PrimeQ[IntegerExponent[#, 2]] &]
  • PARI
    is(n) = isprime(valuation(n, 2));

A036680 Expansion of C in Egyptian fractions, where C contains the primes in binary.

Original entry on oeis.org

3, 13, 226, 757098, 1493980747140, 3358884634272343840743139, 31207490927201886805011133752520957788381952996897, 1532767887228913328212783830676536430748824655051820601315140788525355884052980975649269521964006675
Offset: 0

Views

Author

Keywords

Examples

			C in binary = 0.011010100010100010100010000010100... = 1/3 + 1/13 + 1/226 + ...
		

Crossrefs

Cf. A010051 (binary), A051006 (decimal), A051007 (continued fraction).

A102913 Take characteristic function of the semiprimes A001358, interpret it as a binary fraction and convert to a decimal fraction.

Original entry on oeis.org

0, 4, 0, 5, 7, 3, 5, 0, 0, 2, 0, 1, 3, 9, 8, 0, 6, 8, 6, 7, 4, 3, 1, 1, 2, 6, 6, 4, 2, 3, 5, 3, 5, 7, 5, 0, 6, 9, 3, 6, 2, 7, 5, 8, 2, 1, 9, 4, 0, 0, 2, 3, 5, 8, 6, 0, 8, 3, 3, 4, 0, 6, 9, 4, 6, 3, 3, 3, 6, 2, 5, 2, 4, 7, 3, 5, 1, 3, 5, 1, 3, 9, 1, 0, 5, 4, 4, 2, 5, 2, 5, 8, 2, 3, 8, 0, 5, 8, 6, 4, 3, 3, 4, 5, 2
Offset: 0

Views

Author

Jonathan Vos Post, Jan 17 2005

Keywords

Crossrefs

For the continued fraction form of the semiprime constant, see A102914. For the equivalent characteristic function for primes, see A010051; interpreted as a binary fraction see A051006; for the continued fraction form of that see A051007.

Programs

  • Mathematica
    Semiprime[n_] := If[Plus @@ Last[ Transpose[ FactorInteger[n]]] == 2, 1, 0]; RealDigits[ FromDigits[{Table[ Semiprime[n], {n, 2, 350}], -2}, 2], 10, 111][[1]] (* Ed Pegg Jr *)

Formula

The characteristic function of the semiprimes is the function f(n) = 1 iff n is semiprime, 0 otherwise. This begins, for n = 0, 1, 2, 3, ... f(n) = 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1... If we concatenate these bits and interpret them as the binary fraction 0.0000101001100011000001... (base 2) we have, expressed as a decimal fraction, 0.0405735002013980686743112664235357506936275821940023586083340694633362...
The characteristic function of A001358 is A064911 (for n >= 1, starting with 0, 0, 0, 1 ...). The binary constant here has an additional 0 after the binary point. - Georg Fischer, Aug 04 2021

Extensions

More terms from Robert G. Wilson v, Jan 24 2005

A102914 Continued fraction expansion of the number in A102913.

Original entry on oeis.org

0, 24, 1, 1, 1, 4, 1, 7, 4, 2, 8, 35, 1, 6, 3, 3, 3, 4, 1, 4, 3, 4, 1, 1, 1, 1, 8, 1, 1, 1, 3, 4, 1, 3, 1, 1, 1, 1, 9, 7, 4, 1, 24, 1, 5, 6, 1, 3, 1, 1, 10, 1, 237, 1, 12, 2, 1, 12, 1, 21, 1, 1, 1, 14, 1, 4, 14, 72, 29, 5, 1, 1, 2, 1, 8, 2, 1, 43, 1, 1, 8, 1, 1, 1, 2, 8, 2, 1, 12, 3, 2, 1, 10, 1, 5, 6, 1
Offset: 0

Views

Author

Jonathan Vos Post, Jan 17 2005

Keywords

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_] := If[Plus @@ Last[ Transpose[ FactorInteger[n]]] == 2, 1, 0]; a = FromDigits[{Table[ SemiprimeQ[n], {n, 2, 10^3}], -2}, 2]; ContinuedFraction[ a, 100] (* Robert G. Wilson v, Jan 24 2005 *)

Extensions

More terms from Robert G. Wilson v, Jan 24 2005

A118092 Odd primes raised to odd prime powers.

Original entry on oeis.org

27, 125, 243, 343, 1331, 2187, 2197, 3125, 4913, 6859, 12167, 16807, 24389, 29791, 50653, 68921, 78125, 79507, 103823, 148877, 161051, 177147, 205379, 226981, 300763, 357911, 371293, 389017, 493039, 571787, 704969, 823543, 912673, 1030301
Offset: 1

Views

Author

Jonathan Vos Post, May 11 2006

Keywords

Comments

Subset of A053810 Prime powers of prime numbers. Subset of A000961 Prime powers. Subsets include A030078 Cubes of primes, A050997 Fifth powers of primes.

Crossrefs

Programs

  • Mathematica
    With[{prs=Prime[Range[2,30]]},Take[Union[First[#]^Last[#]&/@ Tuples[prs,2]],40]] (* Harvey P. Dale, Dec 23 2011 *)
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A118092(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(3,x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

{p^q where p is in A065091 and q is in A065091}.
Sum_{n>=1} 1/a(n) = Sum_{p odd prime} P(p) - A051006 + 1/4 = 0.054745292329555814476..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024

Extensions

Extended by Ray Chandler, Oct 28 2008
Previous Showing 31-40 of 48 results. Next