A034852
Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 2, 2, 0, 0, 2, 4, 4, 2, 0, 0, 3, 6, 10, 6, 3, 0, 0, 3, 9, 16, 16, 9, 3, 0, 0, 4, 12, 28, 32, 28, 12, 4, 0, 0, 4, 16, 40, 60, 60, 40, 16, 4, 0, 0, 5, 20, 60, 100, 126, 100, 60, 20, 5, 0, 0, 5, 25, 80, 160, 226, 226, 160, 80, 25, 5, 0, 0, 6, 30, 110, 240
Offset: 0
Triangle begins:
0;
0 0;
0 1 0;
0 1 1 0;
0 2 2 2 0;
0 2 4 4 2 0;
...
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- N. J. A. Sloane, Classic Sequences
-
a034852 n k = a034852_tabl !! n !! k
a034852_row n = a034852_tabl !! n
a034852_tabl = zipWith (zipWith (-)) a007318_tabl a034851_tabl
-- Reinhard Zumkeller, Mar 24 2012
-
nmax = 12; t[n_?EvenQ, k_?EvenQ] := (Binomial[n, k] - Binomial[n/2, k/2])/ 2; t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_?OddQ, k_?EvenQ] := (Binomial[n, k] - Binomial[(n-1)/2, k/2])/2; t[n_?OddQ, k_?OddQ] := (Binomial[n, k] - Binomial[(n-1)/2, (k-1)/2])/2; Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 15 2011, after Yosu Yurramendi *)
A179181
'PE(n,k)' triangle read by rows. PE(n,k) is the number of k-palindromes of n up to cyclic equivalence.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 2, 3, 2, 1, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 2, 6, 4, 4, 2, 1, 1, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 1, 1, 5, 3, 10, 6, 10, 5, 5, 3, 1, 1
Offset: 1
The triangle begins
1
1,1
1,0,1
1,1,1,1
1,0,2,0,1
1,1,2,1,1,1
1,0,3,0,3,0,1
1,1,3,2,3,2,1,1
1,0,4,0,6,0,4,0,1
1,1,4,2,6,4,4,2,1,1
For example, row 8 is 1,1,3,2,3,2,1,1.
We have PE(8,3)=3 because there are 3 3-palindromes of 8, namely: 161, 242, and 323, and none are cyclically equivalent to the others.
We have PE(8,4)=2 because there are 3 4-palindromes of 8, namely: 3113, 1331, and 2222, but 3113 and 1331 are cyclically equivalent.
- John P. McSorley: Counting k-compositions with palindromic and related structures. Preprint, 2010.
If we ignore cyclic equivalence then we have sequence
A051159.
The row sums of the 'PE(n, k)' triangle give sequence
A056503.
-
T[n_, k_] := (3 - (-1)^k)/4*Sum[MoebiusMu[d]*QBinomial[n/d - 1, k/d - 1, -1], {d, Divisors@ GCD[n, k]}]; Table[DivisorSum[GCD[n, k], T[n/#, k/#] &], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Oct 31 2021, after Jean-François Alcover at A179317 *)
-
p(n, k) = if(n%2==1&&k%2==0, 0, binomial((n-1)\2, (k-1)\2));
APE(n, k) = if(k%2,1,1/2) * sumdiv(gcd(n,k), d, moebius(d) * p(n/d, k/d));
T(n, k) = sumdiv(gcd(n,k), d, APE(n/d, k/d));
for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 07 2017
A136482
Triangle read by rows: T(n,k) = 2*A007318(n,k) - A034851(n,k) (i.e., twice Pascal's triangle - the Losanitch triangle).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 8, 6, 1, 1, 7, 14, 14, 7, 1, 1, 9, 21, 30, 21, 9, 1, 1, 10, 30, 51, 51, 30, 10, 1, 1, 12, 40, 84, 102, 84, 40, 12, 1, 1, 13, 52, 124, 186, 186, 124, 52, 13, 1, 1, 15, 65, 180, 310, 378, 310, 180, 65, 15, 1, 1, 16, 80, 245, 490, 688, 688, 490, 245
Offset: 0
Row n=3 is 2*(1,3,3,1) - (1,2,2,1) = (1,4,4,1).
-
A007318 := proc(n,k) binomial(n,k) ; end: A051159 := proc(n,k) binomial(n mod 2, k mod 2)*binomial(floor(n/2),floor(k/2)) ; end: A034851 := proc(n,k) (A007318(n,k)+A051159(n,k))/2 ; end: A136482 := proc(n,k) 2*A007318(n,k)-A034851(n,k) ; end: for n from 0 to 13 do for k from 0 to n do printf("%d,",A136482(n,k)) ; od: od: # R. J. Mathar, May 01 2008
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 8, 10, 8, 1, 1, 9, 18, 18, 9, 1, 1, 12, 27, 40, 27, 12, 1, 1, 13, 39, 67, 67, 39, 13, 1, 1, 16, 52, 112, 134, 112, 52, 16, 1, 1, 17, 68, 164, 246, 246, 164, 68, 17, 1, 1, 20, 85, 240, 410, 504, 410, 240, 85, 20, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 4, 1;
1, 5, 5, 1;
1, 8, 10, 8, 1;
1, 9, 18, 18, 9, 1;
1, 12, 27, 40, 27, 12, 1;
1, 13, 39, 67, 67, 39, 13, 1;
1, 16, 52, 112, 134, 112, 52, 16, 1;
1, 17, 68, 164, 246, 246, 164, 68, 17, 1;
...
-
A136489:= func< n,k | 2*Binomial(n,k) - Binomial(n mod 2, k mod 2)*Binomial(Floor(n/2), Floor(k/2)) >;
[A136489(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2023
-
T[n_, k_]:= 2*Binomial[n,k] -Binomial[Mod[n,2], Mod[k,2]]*Binomial[Floor[n/2], Floor[k/2]];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2023 *)
-
def A136489(n,k): return 2*binomial(n,k) - binomial(n%2, k%2)*binomial(n//2, k//2)
flatten([[A136489(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 01 2023
A239632
Number of parts in all palindromic compositions of n.
Original entry on oeis.org
0, 1, 3, 4, 10, 12, 28, 32, 72, 80, 176, 192, 416, 448, 960, 1024, 2176, 2304, 4864, 5120, 10752, 11264, 23552, 24576, 51200, 53248, 110592, 114688, 237568, 245760, 507904, 524288, 1081344, 1114112, 2293760, 2359296, 4849664, 4980736, 10223616, 10485760, 21495808, 22020096, 45088768, 46137344
Offset: 0
a(5)=12 because we have: 5, 1+3+1, 2+1+2, 1+1+1+1+1 with a total of 12 parts.
-
nn=30; r=Solve[p==y/(1-x) - y + 1 + y^2*x^2/(1-x^2)*p, p]; CoefficientList[Series[D[p/.r,y]/.y->1, {x,0,nn}], x]
CoefficientList[Series[(x + 3 x^2 - 2 x^4)/(1 - 2 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
A121908
S-D transform of Catalan numbers A000108.
Original entry on oeis.org
1, 2, 3, 9, 19, 72, 181, 752, 2051, 8902, 25417, 113249, 333101, 1510888, 4538219, 20853973, 63626003, 295288350, 911918665, 4265460227, 13300767273, 62608960656, 196778953279, 931129725342, 2945833819213, 14000655099890, 44541071348599, 212484364171847
Offset: 0
1 1 2 5 14 42 132 ... (A000108)
2 1 7 9 56 90 ...
3 6 16 47 146 ...
9 10 63 99 ...
19 53 162 ...
72 109 ...
181 ...
Row 1 : A000108
Row 2 : 1+1=2, 2-1=1, 5+2=7, 14-5=9, 42+14=56, 132-42=90, ...
Row 3 : 1+2=3, 7-1=6, 9+7=16, 56-9=47, 90+56=146, ...
Row 4 : 6+3=9, 16-6=10, 47+16=63, 146-47=99, ...
Row 5 : 10+9=19, 63-10=53, 99+63=162, ...
Row 6 : 53+19=72, 162-53=109, ...
Row 7 : 109+72=181, ...
First diagonal of this triangular array form this sequence.
-
a:= proc(n) option remember; `if`(n<6, [1, 2, 3, 9, 19, 72][n+1],
((16*n^2+72*n-153)*n *a(n-1)
+(304*n^4-1276*n^3+1213*n^2+487*n-754) *a(n-2)
-(288*n^3-768*n^2-294*n+1424) *a(n-3)
-(560*n^4-3772*n^3+6497*n^2+1253*n-4558) *a(n-4)
+17*(n-4)*(16*n^2-8*n-29) *a(n-5)
+17*(n-5)*(n-4)*(16*n^2-4*n-13) *a(n-6)) /
(n*(n+1)*(16*n^2-36*n+7)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 12 2014
-
T[n_, k_] := Binomial[Mod[n, 2], Mod[k, 2]] Binomial[Quotient[n, 2], Quotient[k, 2]];
a[n_] := Sum[T[n, k] CatalanNumber[k], {k, 0, n}];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 19 2020 *)
A121909
S-D transform of factorial numbers A000142.
Original entry on oeis.org
1, 2, 3, 10, 29, 162, 799
Offset: 0
Row 1 : 1, 1, 2, 6, 24, 120, ...(A000142)
Row 2 : 1+1=2, 2-1=1, 6+2=8, 24-6=18, 120+24=144, ...
Row 3 : 1+2=3, 9-1=7, 18+8=26, 144-18=126, ...
Row 4 : 7+3=10, 26-7=19, 126+26=152, ...
Row 5 : 19+10=29, 152-19=133, ...
Row 6 : 133+29=162, ...
First term of each row form this sequence.
A171145
The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + n*x + 1)^Floor[n/2]].
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 27, 10, 1, 1, 11, 37, 37, 11, 1, 1, 21, 150, 385, 150, 21, 1, 1, 22, 171, 535, 535, 171, 22, 1, 1, 36, 490, 3024, 7539, 3024, 490, 36, 1, 1, 37, 526, 3514, 10563, 10563, 3514, 526, 37, 1, 1, 55, 1215, 13530, 76845, 188001, 76845
Offset: 1
{1},
{1, 1},
{1, 3, 1},
{1, 4, 4, 1},
{1, 10, 27, 10, 1},
{1, 11, 37, 37, 11, 1},
{1, 21, 150, 385, 150, 21, 1},
{1, 22, 171, 535, 535, 171, 22, 1},
{1, 36, 490, 3024, 7539, 3024, 490, 36, 1},
{1, 37, 526, 3514, 10563, 10563, 3514, 526, 37, 1},
{1, 55, 1215, 13530, 76845, 188001, 76845, 13530, 1215, 55, 1},
{1, 56, 1270, 14745, 90375, 264846, 264846, 90375, 14745, 1270, 56, 1}
-
Clear[p, n, x, a]
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + n*x + 1)^Floor[n/2]];
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
Flatten[a]
A171146
The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n - 1)*x + 1)^Floor[n/2]] ( correction).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 18, 83, 18, 1, 1, 19, 101, 101, 19, 1, 1, 39, 510, 2275, 510, 39, 1, 1, 40, 549, 2785, 2785, 549, 40, 1, 1, 68, 1738, 19856, 86995, 19856, 1738, 68, 1, 1, 69, 1806, 21594, 106851, 106851, 21594, 1806, 69, 1, 1, 105, 4415, 93030, 985645
Offset: 1
{1},
{1, 1},
{1, 5, 1},
{1, 6, 6, 1},
{1, 18, 83, 18, 1},
{1, 19, 101, 101, 19, 1},
{1, 39, 510, 2275, 510, 39, 1},
{1, 40, 549, 2785, 2785, 549, 40, 1},
{1, 68, 1738, 19856, 86995, 19856, 1738, 68, 1},
{1, 69, 1806, 21594, 106851, 106851, 21594, 1806, 69, 1},
{1, 105, 4415, 93030, 985645, 4269951, 985645, 93030, 4415, 105, 1},
{1, 106, 4520, 97445, 1078675, 5255596, 5255596, 1078675, 97445, 4520, 106, 1}
-
Clear[p, n, x, a]
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + (2*n - 1)*x + 1)^Floor[n/2]];
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
Flatten[a]
A171147
The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n)*x + 1)^Floor[n/2]].
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 7, 7, 1, 1, 20, 102, 20, 1, 1, 21, 122, 122, 21, 1, 1, 42, 591, 2828, 591, 42, 1, 1, 43, 633, 3419, 3419, 633, 43, 1, 1, 72, 1948, 23544, 108870, 23544, 1948, 72, 1, 1, 73, 2020, 25492, 132414, 132414, 25492, 2020, 73, 1, 1, 110, 4845, 106920
Offset: 1
{1},
{1, 1},
{1, 6, 1},
{1, 7, 7, 1},
{1, 20, 102, 20, 1},
{1, 21, 122, 122, 21, 1},
{1, 42, 591, 2828, 591, 42, 1},
{1, 43, 633, 3419, 3419, 633, 43, 1},
{1, 72, 1948, 23544, 108870, 23544, 1948, 72, 1},
{1, 73, 2020, 25492, 132414, 132414, 25492, 2020, 73, 1},
{1, 110, 4845, 106920, 1185810, 5367252, 1185810, 106920, 4845, 110, 1},
{1, 111, 4955, 111765, 1292730, 6553062, 6553062, 1292730, 111765, 4955, 111, 1}
-
Clear[p, n, x, a]
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + (2*n)*x + 1)^Floor[n/2]];
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
Flatten[a]
Comments