cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A326363 Number of maximal intersecting antichains of subsets of {1..n}.

Original entry on oeis.org

1, 2, 4, 6, 21, 169, 11749, 12160648
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other, and is intersecting if no two element are disjoint.

Examples

			The a(1) = 1 through a(4) = 21 maximal intersecting antichains:
  {}   {}    {}            {}
  {1}  {1}   {1}           {1}
       {2}   {2}           {2}
       {12}  {3}           {3}
             {123}         {4}
             {12}{13}{23}  {1234}
                           {12}{13}{23}
                           {12}{14}{24}
                           {13}{14}{34}
                           {23}{24}{34}
                           {12}{134}{234}
                           {13}{124}{234}
                           {14}{123}{234}
                           {23}{124}{134}
                           {24}{123}{134}
                           {34}{123}{124}
                           {12}{13}{14}{234}
                           {12}{23}{24}{134}
                           {13}{23}{34}{124}
                           {14}{24}{34}{123}
                           {123}{124}{134}{234}
		

Crossrefs

The case with nonempty, non-singleton edges is A326362.
Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{0,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets] (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 1, a(n) = A007363(n + 1) + 1 = A326362(n) + n + 1.

Extensions

a(7) from Elijah Beregovsky, May 06 2020

A326910 BII-numbers of pairwise intersecting set-systems.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 16, 17, 20, 21, 24, 32, 34, 36, 38, 40, 48, 52, 56, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321, 324, 325, 336, 337, 340, 341, 384, 512, 514
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all pairwise intersecting set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  24: {{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  36: {{1,2},{2,3}}
  38: {{2},{1,2},{2,3}}
  40: {{3},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  56: {{3},{1,3},{2,3}}
		

Crossrefs

Intersecting set systems are A051185 (not-covering) or A305843 (covering).
BII-numbers of set-systems with empty intersection are A326911.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&]

A337694 Numbers with no two relatively prime prime indices.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 183, 185, 189, 191, 193, 197, 199
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2020

Keywords

Comments

First differs from A305078 in having 1 and lacking 195.
First differs from A305103 in having 1 and 169 and lacking 195.
First differs from A328336 in lacking 897, with prime indices (2,6,9).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions in which no two parts are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}      37: {12}     79: {22}      121: {5,5}
   3: {2}     39: {2,6}    81: {2,2,2,2} 125: {3,3,3}
   5: {3}     41: {13}     83: {23}      127: {31}
   7: {4}     43: {14}     87: {2,10}    129: {2,14}
   9: {2,2}   47: {15}     89: {24}      131: {32}
  11: {5}     49: {4,4}    91: {4,6}     133: {4,8}
  13: {6}     53: {16}     97: {25}      137: {33}
  17: {7}     57: {2,8}   101: {26}      139: {34}
  19: {8}     59: {17}    103: {27}      147: {2,4,4}
  21: {2,4}   61: {18}    107: {28}      149: {35}
  23: {9}     63: {2,2,4} 109: {29}      151: {36}
  25: {3,3}   65: {3,6}   111: {2,12}    157: {37}
  27: {2,2,2} 67: {19}    113: {30}      159: {2,16}
  29: {10}    71: {20}    115: {3,9}     163: {38}
  31: {11}    73: {21}    117: {2,2,6}   167: {39}
		

Crossrefs

A200976 and A328673 count these partitions.
A302696 and A302569 are pairwise coprime instead of pairwise non-coprime.
A318719 is the squarefree case.
A328867 looks at distinct prime indices.
A337666 is the version for standard compositions.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337667 counts pairwise non-coprime compositions.

Programs

  • Maple
    filter:= proc(n) local F,i,j,np;
      if n::even and n>2 then return false fi;
      F:= map(t -> numtheory:-pi(t[1]), ifactors(n)[2]);
      np:= nops(F);
      for i from 1 to np-1 do
        for j from i+1 to np do
          if igcd(F[i],F[j])=1 then return false fi
      od od;
      true
    end proc:
    select(filter, [$1..300]); # Robert Israel, Oct 06 2020
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Select[Range[100],stabQ[primeMS[#],CoprimeQ]&]

A319774 Number of intersecting set systems spanning n vertices whose dual is also an intersecting set system.

Original entry on oeis.org

1, 1, 2, 14, 814, 1174774, 909125058112, 291200434263385001951232
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			The a(3) = 14 set systems:
   {{1},{1,2},{1,2,3}}
   {{1},{1,3},{1,2,3}}
   {{2},{1,2},{1,2,3}}
   {{2},{2,3},{1,2,3}}
   {{3},{1,3},{1,2,3}}
   {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1,2},{1,3},{1,2,3}}
   {{1,2},{2,3},{1,2,3}}
   {{1,3},{2,3},{1,2,3}}
   {{1},{1,2},{1,3},{1,2,3}}
   {{2},{1,2},{2,3},{1,2,3}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Intersecting set-systems are A051185.
The unlabeled multiset partition version is A319773.
The covering case is A327037.
The version without strict dual is A327038.
Cointersecting set-systems are A327039.
The BII-numbers of these set-systems are A327061.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[#,Intersection[#1,#2]=={}&]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}] (* Gus Wiseman, Aug 19 2019 *)

Extensions

a(6)-a(7) from Christian Sievers, Aug 18 2024

A326361 Number of maximal intersecting antichains of sets covering n vertices with no singletons.

Original entry on oeis.org

1, 1, 1, 2, 12, 133, 11386, 12143511
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 12 antichains:
  {{1,2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[stableSets[Subsets[Range[n]],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],Union@@#==Range[n]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = Select[FindClique[g, Infinity, All], BitOr @@ # == n - 1 &];
    Length[sets] (* Elijah Beregovsky, May 05 2020 *)

Extensions

a(6)-a(7) from Elijah Beregovsky, May 05 2020

A337666 Numbers k such that any two parts of the k-th composition in standard order (A066099) have a common divisor > 1.

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 128, 130, 136, 138, 160, 162, 168, 170, 256, 260, 288, 292, 512, 514, 520, 522, 528, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 1024, 2048, 2050, 2052, 2056, 2058, 2080, 2082, 2084, 2088, 2090, 2176
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2020

Keywords

Comments

Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15).
This is a ranking sequence for pairwise non-coprime compositions.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
       0: ()          138: (4,2,2)       546: (4,4,2)
       2: (2)         160: (2,6)         552: (4,2,4)
       4: (3)         162: (2,4,2)       554: (4,2,2,2)
       8: (4)         168: (2,2,4)       640: (2,8)
      10: (2,2)       170: (2,2,2,2)     642: (2,6,2)
      16: (5)         256: (9)           648: (2,4,4)
      32: (6)         260: (6,3)         650: (2,4,2,2)
      34: (4,2)       288: (3,6)         672: (2,2,6)
      36: (3,3)       292: (3,3,3)       674: (2,2,4,2)
      40: (2,4)       512: (10)          680: (2,2,2,4)
      42: (2,2,2)     514: (8,2)         682: (2,2,2,2,2)
      64: (7)         520: (6,4)        1024: (11)
     128: (8)         522: (6,2,2)      2048: (12)
     130: (6,2)       528: (5,5)        2050: (10,2)
     136: (4,4)       544: (4,6)        2052: (9,3)
		

Crossrefs

A337604 counts these compositions of length 3.
A337667 counts these compositions.
A337694 is the version for Heinz numbers of partitions.
A337696 is the strict case.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 count pairwise non-coprime partitions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A291166 appears to rank relatively prime compositions.
- A326674 is greatest common divisor.
- A333219 is Heinz number.
- A333227 ranks coprime (Mathematica definition) compositions.
- A333228 ranks compositions with distinct parts coprime.
- A335235 ranks singleton or coprime compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[0,1000],stabQ[stc[#],CoprimeQ]&]

A326362 Number of maximal intersecting antichains of nonempty, non-singleton subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 16, 163, 11742, 12160640
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 16 maximal intersecting antichains:
  {{1,2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,4},{2,4}}
  {{1,3},{1,4},{3,4}}
  {{2,3},{2,4},{3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}]
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets]-Log[2,n]-1 (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 1, a(n) = A326363(n) - n - 1 = A007363(n + 1) - n.

Extensions

a(7) from Elijah Beregovsky, May 06 2020

A051181 Number of 4-element intersecting families of an n-element set.

Original entry on oeis.org

0, 0, 0, 4, 365, 11770, 278455, 5715094, 108498285, 1963243930, 34404675635, 589459538734, 9933916068505, 165358097339890, 2726894329246815, 44648990949187174, 727080119853611525, 11790570902483264650, 190587735542474633995, 3073193346666282232414
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1/4! (16^n - 6*12^n + 12*10^n - 9^n - 22*8^n + 15*7^n + 12*6^n - 17*5^n + 17*4^n - 11*3^n - 6*2^n + 6), {n, 0, 50}] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{83,-3052,65670,-919413,8804499,-58966886,277278100,-904270136,1982352768,-2749917312,2142305280,-696729600},{0,0,0,4,365,11770,278455,5715094,108498285,1963243930,34404675635,589459538734},20] (* Harvey P. Dale, Jul 04 2019 *)
  • PARI
    for(n=0,25, print1((1/4!)*(16^n-6*12^n+12*10^n-9^n-22*8^n+15*7^n +12*6^n-17*5^n+17*4^n-11*3^n-6*2^n+6), ", ")) \\ G. C. Greubel, Oct 06 2017

Formula

a(n) = (1/4!)*(16^n - 6*12^n + 12*10^n - 9^n - 22*8^n + 15*7^n + 12*6^n - 17*5^n + 17*4^n - 11*3^n - 6*2^n + 6).
G.f.: -x^3*(64667520*x^8 - 81966960*x^7 + 42070268*x^6 - 11421992*x^5 + 1766529*x^4 - 152845*x^3 + 6317*x^2 - 33*x - 4)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(12*x-1)*(16*x-1)). - Colin Barker, Jul 30 2012

Extensions

More terms from Harvey P. Dale, Jul 04 2019

A326912 BII-numbers of pairwise intersecting set-systems with empty intersection.

Original entry on oeis.org

0, 52, 116, 772, 832, 836, 1072, 1076, 1136, 1140, 1796, 1856, 1860, 2320, 2368, 2384, 2592, 2624, 2656, 2880, 3088, 3104, 3120, 3136, 3152, 3168, 3184, 3344, 3392, 3408, 3616, 3648, 3680, 3904, 4132, 4148, 4196, 4212, 4612, 4640, 4644, 4672, 4676, 4704, 4708
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all pairwise intersecting set-systems with empty intersection, together with their BII-numbers, begins:
     0: {}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
   772: {{1,2},{1,4},{2,4}}
   832: {{1,2,3},{1,4},{2,4}}
   836: {{1,2},{1,2,3},{1,4},{2,4}}
  1072: {{1,3},{2,3},{1,2,4}}
  1076: {{1,2},{1,3},{2,3},{1,2,4}}
  1136: {{1,3},{2,3},{1,2,3},{1,2,4}}
  1140: {{1,2},{1,3},{2,3},{1,2,3},{1,2,4}}
  1796: {{1,2},{1,4},{2,4},{1,2,4}}
  1856: {{1,2,3},{1,4},{2,4},{1,2,4}}
  1860: {{1,2},{1,2,3},{1,4},{2,4},{1,2,4}}
  2320: {{1,3},{1,4},{3,4}}
  2368: {{1,2,3},{1,4},{3,4}}
  2384: {{1,3},{1,2,3},{1,4},{3,4}}
  2592: {{2,3},{2,4},{3,4}}
  2624: {{1,2,3},{2,4},{3,4}}
  2656: {{2,3},{1,2,3},{2,4},{3,4}}
  2880: {{1,2,3},{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],(#==0||Intersection@@bpe/@bpe[#]=={})&&stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&]

A327057 Number of antichains covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 2, 4, 9, 36, 1572, 3750221
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other. This sequence counts antichains whose dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(3) = 9 antichains:
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2,3}}
                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains are A000372.
The BII-numbers of these set-systems are the intersection of A326704 and A326853.
The covering case is A327020.
Cointersecting set-systems are A327039.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,5}]

Formula

Binomial transform of A327020.
Previous Showing 11-20 of 59 results. Next