A051262
10-factorial numbers.
Original entry on oeis.org
1, 10, 200, 6000, 240000, 12000000, 720000000, 50400000000, 4032000000000, 362880000000000, 36288000000000000, 3991680000000000000, 479001600000000000000, 62270208000000000000000
Offset: 0
a(n) =
A048176(n+1, 0)*(-1)^n (first column of unsigned triangle).
-
[10^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$10))},labeled]: seq(count(A,size=n)/10,n=0..14); # Zerinvary Lajos, Dec 05 2007
-
Array[#!*10^# &, 14, 0] (* Michael De Vlieger, Sep 04 2017 *)
A053106
a(n) = ((7*n+10)(!^7))/10(1^7), related to A034830 (((7*n+3)(!^7))/3 sept-, or 7-factorials).
Original entry on oeis.org
1, 17, 408, 12648, 480624, 21628080, 1124660160, 66354949440, 4379426663040, 319698146401920, 25575851712153600, 2225099098957363200, 209159315301992140800, 21125090845501206220800
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-7*x)^(17/7))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 16, 5!, 7}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 7*x)^(17/7), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-7*x)^(17/7))) \\ G. C. Greubel, Aug 16 2018
A196347
Triangle T(n, k) read by rows, T(n, k) = n!*binomial(n, k).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 24, 96, 144, 96, 24, 120, 600, 1200, 1200, 600, 120, 720, 4320, 10800, 14400, 10800, 4320, 720, 5040, 35280, 105840, 176400, 176400, 105840, 35280, 5040, 40320, 322560, 1128960, 2257920, 2822400, 2257920, 1128960, 322560, 40320
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 2;
6, 18, 18, 6;
24, 96, 144, 96, 24;
120, 600, 1200, 1200, 600, 120;
...
- G. C. Greubel, Table of n, a(n) for n = 0..495
- P. Bala, Deformations of the Hadamard product of power series
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- M. Dukes, C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
-
/* As triangle */ [[Factorial(n)*Binomial(n, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 28 2015
-
Table[n!*Binomial[n, j], {n, 0, 30}, {j, 0, n}] (* G. C. Greubel, Sep 27 2015 *)
-
factorial(n)*binomial(n,k) # Danny Rorabaugh, Sep 27 2015
A053104
a(n) = ((7*n+8)(!^7))/8, related to A045754 ((7*n+1)(!^7) sept-, or 7-factorials).
Original entry on oeis.org
1, 15, 330, 9570, 344520, 14814360, 740718000, 42220926000, 2702139264000, 191851887744000, 14964447244032000, 1271978015742720000, 117021977448330240000, 11585175767384693760000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-7*x)^(15/7))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 5!, 7}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 7*x)^(15/7), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-7*x)^(15/7))) \\ G. C. Greubel, Aug 16 2018
A053105
a(n) = ((7*n+9)(!^7))/9(!^7), related to A034829 (((7*n+2)(!^7))/2 sept-, or 7-factorials).
Original entry on oeis.org
1, 16, 368, 11040, 408480, 17973120, 916629120, 53164488960, 3455691782400, 248809808332800, 19655974858291200, 1690413837813043200, 157208486916613017600, 15720848691661301760000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-7*x)^(16/7))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 15, 5!, 7}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
CoefficientList[Series[1/(1-7x)^(16/7),{x,0,20}],x]Range[0,20]! (* Harvey P. Dale, Sep 11 2011 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-7*x)^(16/7))) \\ G. C. Greubel, Aug 16 2018
A131182
Table T(n,k) = n!*k^n, read by upwards antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 8, 3, 1, 0, 24, 48, 18, 4, 1, 0, 120, 384, 162, 32, 5, 1, 0, 720, 3840, 1944, 384, 50, 6, 1, 0, 5040, 46080, 29160, 6144, 750, 72, 7, 1, 0, 40320, 645120, 524880, 122880, 15000, 1296, 98, 8, 1, 0, 362880, 10321920, 11022480, 2949120, 375000, 31104, 2058, 128, 9, 1
Offset: 0
The (inverted) table begins:
k=0: 1, 0, 0, 0, 0, 0, ... (A000007)
k=1: 1, 1, 2, 6, 24, 120, ... (A000142)
k=2: 1, 2, 8, 48, 384, 3840, ... (A000165)
k=3: 1, 3, 18, 162, 1944, 29160, ... (A032031)
k=4: 1, 4, 32, 384, 6144, 122880, ... (A047053)
k=5: 1, 5, 50, 750, 15000, 375000, ... (A052562)
k=6: 1, 6, 72, 1296, 31104, 933120, ... (A047058)
k=7: 1, 7, 98, 2058, 57624, 2016840, ... (A051188)
k=8: 1, 8, 128, 3072, 98304, 3932160, ... (A051189)
k=9: 1, 9, 162, 4374, 157464, 7085880, ... (A051232)
Main diagonal is 1, 1, 8, 162, 6144, 375000, ... (A061711).
-
T:= (n,k)-> n!*k^n:
seq(seq(T(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 06 2019
-
from math import factorial
def A131182_T(n, k): # compute T(n, k)
return factorial(n)*k**n # Chai Wah Wu, Sep 01 2022
A196258
a(n) = 11^n*n!.
Original entry on oeis.org
1, 11, 242, 7986, 351384, 19326120, 1275523920, 98215341840, 8642950081920, 855652058110080, 94121726392108800, 11388728893445164800, 1503312213934761753600, 214973646592670930764800, 33105941575271323337779200
Offset: 0
Cf.
A000142,
A000165,
A032031,
A047053,
A052562,
A047058,
A051188,
A051189,
A051232,
A051262,
A145448.
Comments