cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A364265 The first term in a chain of at least 3 consecutive numbers each with exactly 6 distinct prime factors (i.e., belonging to A074969).

Original entry on oeis.org

323567034, 431684330, 468780388, 481098980, 577922904, 639336984, 715008644, 720990620, 726167154, 735965384, 769385252, 808810638, 822981560, 831034918, 839075510, 847765554, 879549670, 895723268, 902976710, 903293468, 904796814, 918520420, 940737005, 944087484, 982059364
Offset: 1

Views

Author

R. J. Mathar, Jul 16 2023

Keywords

Comments

To distinguish this from A259349: "Numbers n with exactly k distinct prime factors" means numbers with A001221(n) = omega(n) = k, which specifies that in the prime factorization n = Product_{i>=1} p_i^(e_i), e_i >= 1, the exponents are ignored, and only the size of the set of the (distinct) p_i is considered. In A259349, the numbers n are products of k distinct primes, which means in the prime factorization of n, all exponents e_i are equal to 1. (If all exponents e_i = 1, the n are squarefree, i.e., in A005117.) Rephrased: the n which are products of k distinct primes have A001221(n) = omega(n) = A001222(n) = bigomega(n) = k, whereas the n which have exactly k distinct prime factors are the superset of (weaker) requirement A001221(n) = omega(n) = k. - R. J. Mathar, Jul 18 2023

Crossrefs

Cf. A259349 (requires squarefree). Subsequence of A273879.
Cf. A364266 (5 distinct factors).
See also A001221, A001222, A005117.
Numbers divisible by d distinct primes: A246655 (d=1), A007774 (d=2), A033992 (d=3), A033993 (d=4), A051270 (d=5), A074969 (d=6), A176655 (d=7), A348072 (d=8), A348073 (d=9).

Programs

  • Maple
    omega := proc(n)
        nops(numtheory[factorset](n)) ;
    end proc:
    for k from 1 do
        if omega(k) = 6 then
            if omega(k+1) = 6 then
                if omega(k+2) = 6 then
                    print(k) ;
                end if;
            end if;
        end if;
    end do:
  • PARI
    upto(n) = {my(res = List(), streak = 0); forfactored(i = 2, n, if(#i[2]~ == 6, streak++; if(streak >= 3, listput(res, i[1] - 2)), streak = 0)); res} \\ David A. Corneth, Jul 18 2023

Formula

a(1) = A138206(3).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 6}.

Extensions

More terms from David A. Corneth, Jul 18 2023

A046391 Odd numbers with exactly 5 distinct prime factors.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 36465, 39585, 40755, 41055, 42315, 42735, 45885, 47355, 49335, 49665, 50505, 51051, 51765, 53295, 54285, 55335, 55965, 57057, 57855, 58695, 61215, 61845, 62205
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			50505 = 3 * 5 * 7 * 13 * 37.
		

Crossrefs

Intersection of A051270 and A005408.

Programs

  • Maple
    isA046391 := proc(n)
        type(n,'odd') and (A001221(n) = 5 ) ;
    end proc:
    for n from 1 do
        if isA046391(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,9!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
  • Python
    from sympy import primefactors, factorint
    print([n for n in range(1, 100000, 2) if len(primefactors(n)) == 5 and max(list(factorint(n).values())) < 2]) # Karl-Heinz Hofmann, Mar 01 2023

A323056 Numbers with exactly five distinct exponents in their prime factorization, or five distinct parts in their prime signature.

Original entry on oeis.org

174636000, 206388000, 244490400, 261954000, 269892000, 274428000, 288943200, 291060000, 301644000, 309582000, 343980000, 349272000, 365148000, 366735600, 377848800, 383292000, 404838000, 411642000, 412776000, 422301600, 433414800, 449820000, 452466000, 457380000
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(5) = 174636000.
Positions of 5's in A071625.
Numbers k such that A001221(A181819(k)) = 5.

Examples

			174636000 = 2^5 * 3^4 * 5^3 * 7^2 * 11^1 has five distinct exponents so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: A323055.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Mathematica
    Select[Range[300000000],Length[Union[Last/@FactorInteger[#]]]==5&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 5 \\ David A. Corneth, Jan 12 2019

Extensions

a(13)-a(24) from Daniel Suteu, Jan 12 2019

A046395 Palindromes that are the product of 5 distinct primes.

Original entry on oeis.org

6006, 8778, 20202, 28182, 41514, 43134, 50505, 68586, 87978, 111111, 141141, 168861, 202202, 204402, 209902, 246642, 249942, 262262, 266662, 303303, 323323, 393393, 399993, 438834, 454454, 505505, 507705, 515515, 516615, 519915, 534435, 535535, 543345
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

No exponent of the distinct prime factors can be greater than one, i.e., no prime powers are permitted. - Harvey P. Dale, Apr 09 2021 at the suggestion of Sean A. Irvine
See A373465 for the similar sequence where only distinct prime divisors are counted, but may occur to higher powers. - M. F. Hasler, Jun 06 2024

Examples

			505505 = 5 * 7 * 11 * 13 * 101.
		

Crossrefs

Cf. A002113 (palindromes), A051270 (omega(.) = 5).
Cf. A046331 (palindromes with 5 prime factors counted with multiplicity), A373465 (counting only distinct prime divisors).

Programs

  • Mathematica
    Select[Range[550000],PalindromeQ[#]&&PrimeNu[#]==PrimeOmega[#]==5&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 09 2021 *)

Formula

Intersection of A002113 and A046387.

Extensions

Corrected at the suggestion of Sean A. Irvine by Harvey P. Dale, Apr 09 2021
Name edited to avoid confusion by M. F. Hasler, Jun 06 2024

A064040 Integers whose number of distinct prime divisors is prime.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Lior Manor, Aug 23 2001

Keywords

Comments

For all terms below 210 this sequence and A024619 are identical.

Examples

			210 = 2*3*5*7 has 4 prime factors, hence it is not here, but it is part of A024619.
		

Crossrefs

Programs

  • Maple
    q:= n-> isprime(nops(ifactors(n)[2])):
    select(q, [$1..210])[];  # Alois P. Heinz, Apr 18 2024
  • Mathematica
    Select[Range[200], PrimeQ[PrimeNu[#]] &] (* Paolo Xausa, Mar 28 2024 *)
  • PARI
    n=0; for (m=1, 10^9, if (isprime(omega(m)), write("b064040.txt", n++, " ", m); if (n==1000, break))) \\ Harry J. Smith, Sep 06 2009
    
  • PARI
    is(n)=isprime(omega(n)) \\ Charles R Greathouse IV, Sep 18 2015

Extensions

Edited by Charles R Greathouse IV, Mar 18 2010
Name edited by Michel Marcus, Oct 16 2023

A136154 Composites one larger than a prime, with exactly five distinct prime factors.

Original entry on oeis.org

2310, 2730, 3990, 4290, 6090, 6270, 7590, 7854, 8610, 8970, 9030, 9240, 9282, 9690, 10010, 10710, 11550, 11970, 12012, 12540, 12810, 13110, 13260, 13398, 13650, 13860, 14322, 14490, 14630, 15330, 15810, 15960, 16302, 16422, 16530, 16830
Offset: 1

Views

Author

Enoch Haga, Dec 16 2007

Keywords

Examples

			a(0)=2310 because 2310 follows the prime 2309 and has five factors 2, 3, 5, 7 and 11.
		

Crossrefs

Programs

  • PARI
    isok(n) = (omega(n)==5) && isprime(n-1); \\ Michel Marcus, Jun 08 2014

Formula

Equals A008864 INTERSECT A051270. - R. J. Mathar, Feb 20 2008

Extensions

Edited by R. J. Mathar, Feb 20 2008
Typo in a(36) corrected by Seth A. Troisi, May 13 2022

A373465 Palindromes with exactly 5 distinct prime divisors.

Original entry on oeis.org

6006, 8778, 20202, 28182, 40404, 41514, 43134, 50505, 60606, 63336, 66066, 68586, 80808, 83538, 86268, 87978, 111111, 141141, 168861, 171171, 202202, 204402, 209902, 210012, 212212, 219912, 225522, 231132, 232232, 239932, 246642, 249942, 252252, 258852, 262262, 266662, 272272
Offset: 1

Views

Author

M. F. Hasler, Jun 06 2024

Keywords

Examples

			a(1) = 6006 = 2 * 3 * 7 * 11 * 13 is a palindrome (A002113) with 5 prime divisors.
a(5) = 40404 = 2^2 * 3 * 7 * 13 * 37 also is a palindrome with 5 prime divisors, although the divisor 2 occurs twice as a factor in the factorization.
		

Crossrefs

Cf. A002113 (palindromes), A051270 (omega(.) = 5).
Cf. A046331 (same but counting prime factors with multiplicity), A046395 (same but squarefree), A373466 (same with omega = 6), A373467 (with omega = 7).

Programs

  • Mathematica
    Select[Range[300000],PalindromeQ[#]&&Length[FactorInteger[#]]==5&] (* James C. McMahon, Jun 08 2024 *)
    Select[Range[300000],PalindromeQ[#]&&PrimeNu[#]==5&] (* Harvey P. Dale, Sep 01 2024 *)
  • PARI
    A373465_upto(N, start=1, num_fact=5)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && listput(L, start)); L}

Formula

Intersection of A002113 and A051270.

A348266 k-digit numbers whose digit(s) are the number of distinct prime factors in each of the preceding k integers.

Original entry on oeis.org

22, 313, 2232, 2323, 2333, 32215, 432152, 2434332, 4222423, 43332543, 332325334, 2535332433, 4532543535234, 5435433351423
Offset: 1

Views

Author

Metin Sariyar, Oct 09 2021

Keywords

Comments

a(12) <= 2535332433. - David A. Corneth, Oct 10 2021
a(12) >= 10^9. - Michel Marcus, Oct 11 2021

Examples

			22 is a term because omega(20) = 2 and omega(21) = 2, whose concatenation is 22.
313 is a term because preceding it omega(310) = 3, omega(311) = 1 and omega(312) = 3, and their concatenation is 313.
32215 is a term because, the number of distinct prime divisors of 32210, 32211, 32212, 32213 and 32214 are 3, 2, 2, 1, 5 and their ordered concatenation gives the next number 32215.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[33000], FromDigits[PrimeNu /@ (# - Range[IntegerLength[#], 1, -1])] == # &] (* Amiram Eldar, Oct 09 2021 *)
  • PARI
    isok(m) = {my(s="", k=m, i=1); while(1, s = concat(s, Str(omega(k))); if (eval(s) == m+i, return (i)); if (eval(s) > m+i, return(0)); k++; i++;);}
    lista(nn) = my(nb); for(n=1, nn, if (nb=isok(n), print1(n+nb, ", "))); \\ Michel Marcus, Oct 09 2021

Extensions

a(8)-a(9) from Amiram Eldar, Oct 09 2021
a(10)-a(11) from Michel Marcus, Oct 10 2021
a(12) confirmed by Martin Ehrenstein, Oct 28 2021
a(13)-a(14) from Martin Ehrenstein, Oct 30 2021

A324206 Numbers with exactly six distinct exponents in their prime factorization, or six distinct parts in their prime signature.

Original entry on oeis.org

5244319080000, 6197831640000, 6857955720000, 7342046712000, 7664774040000, 7866478620000, 8241072840000, 8676964296000, 8740531800000, 9278410680000, 9296747460000, 9578467080000, 9601138008000, 10286933580000, 10329719400000, 10488638160000, 10598658840000, 10705345560000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			6197831640000 = 2^6 * 3^5 * 5^4 * 7^3 * 11 * 13^2 is in the sequence as there are 6 distinct exponents; 1 through 6.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 6

A324207 Numbers with exactly seven distinct exponents in their prime factorization, or seven distinct parts in their prime signature.

Original entry on oeis.org

2677277333530800000, 2992251137475600000, 3164055030536400000, 3501054974617200000, 3536296798834800000, 3622198745365200000, 3748188266943120000, 4015916000296200000, 4189151592465840000, 4207150095548400000, 4280780335431600000, 4373290124002800000, 4429677042750960000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			2677277333530800000 = 2^7 * 3^6 * 5^5 * 7^4 * 11^3 * 13^2 * 17 is in the sequence. There are exactly 7 distinct exponents; 1 through 7 in it.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 7
Previous Showing 11-20 of 25 results. Next