cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 106 results. Next

A360242 Number of integer partitions of n where the parts do not have the same mean as the distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 9, 11, 19, 25, 43, 49, 82, 103, 136, 183, 258, 314, 435, 524, 687, 892, 1150, 1378, 1788, 2241, 2773, 3399, 4308, 5142, 6501, 7834, 9600, 11726, 14099, 16949, 20876, 25042, 30032, 35732, 43322, 51037, 61650, 72807, 86319, 102983, 122163
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2023

Keywords

Examples

			The a(1) = 0 through a(9) = 19 partitions:
  .  .  .  (211)  (221)   (411)    (322)     (332)      (441)
                  (311)   (3111)   (331)     (422)      (522)
                  (2111)  (21111)  (511)     (611)      (711)
                                   (2221)    (4211)     (3222)
                                   (3211)    (5111)     (3321)
                                   (4111)    (22211)    (4221)
                                   (22111)   (32111)    (4311)
                                   (31111)   (41111)    (5211)
                                   (211111)  (221111)   (6111)
                                             (311111)   (22221)
                                             (2111111)  (32211)
                                                        (33111)
                                                        (42111)
                                                        (51111)
                                                        (321111)
                                                        (411111)
                                                        (2211111)
                                                        (3111111)
                                                        (21111111)
For example, the partition y = (32211) has mean 9/5 and distinct parts {1,2,3} with mean 2, so y is counted under a(9).
		

Crossrefs

The complement for multiplicities instead of distinct parts is A360068.
The complement is counted by A360243, ranks A360247.
For median instead of mean we have A360244, complement A360245.
These partitions have ranks A360246.
Sum of A360250 and A360251, ranks A360252 and A360253.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A058398 counts partitions by mean, also A327482.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A360071 counts partitions by number of parts and number of distinct parts.
A360241 counts partitions whose distinct parts have integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[#]!=Mean[Union[#]]&]],{n,0,30}]

A360243 Number of integer partitions of n where the parts have the same mean as the distinct parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 6, 11, 11, 17, 13, 28, 19, 32, 40, 48, 39, 71, 55, 103, 105, 110, 105, 197, 170, 195, 237, 319, 257, 462, 341, 515, 543, 584, 784, 1028, 761, 973, 1153, 1606, 1261, 2137, 1611, 2368, 2815, 2575, 2591, 4393, 3798, 4602, 4663, 5777, 5121
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (11111)  (51)      (61)       (62)
                                     (222)     (421)      (71)
                                     (321)     (1111111)  (431)
                                     (2211)               (521)
                                     (111111)             (2222)
                                                          (3221)
                                                          (3311)
                                                          (11111111)
		

Crossrefs

For multiplicities instead of distinct parts we have A360068.
The complement is counted by A360242, ranks A360246.
For median instead of mean we have A360245, complement A360244.
These partitions have ranks A360247.
Cf. A360250 and A360251, ranks A360252 and A360253.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A058398 counts partitions by mean, also A327482.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A360071 counts partitions by number of parts and number of distinct parts.
A360241 counts partitions whose distinct parts have integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[#]==Mean[Union[#]]&]],{n,0,30}]

A361851 Number of integer partitions of n such that (length) * (maximum) <= 2*n.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 18, 23, 31, 37, 51, 58, 75, 96, 116, 126, 184, 193, 253, 307, 346, 402, 511, 615, 678, 792, 1045, 1088, 1386, 1419, 1826, 2181, 2293, 2779, 3568, 3659, 3984, 4867, 5885, 6407, 7732, 8124, 9400, 11683, 13025, 13269, 16216, 17774, 22016
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2023

Keywords

Comments

Also partitions such that (maximum) <= 2*(mean).
These are partitions whose complement (see example) has size <= n.

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (411)     (421)
                                     (2211)    (2221)
                                     (3111)    (3211)
                                     (21111)   (22111)
                                     (111111)  (211111)
                                               (1111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 <= 2*7, so y is counted under a(7).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 is not <= 2*9, so y is not counted under a(9).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement of size 5, and 5 <= 7, so y is counted under a(7).
		

Crossrefs

For length instead of mean we have A237755.
For minimum instead of mean we have A237824.
For median instead of mean we have A361848.
The equal case for median is A361849, ranks A361856.
The unequal case is A361852, median A361858.
The equal case is A361853, ranks A361855.
Reversing the inequality gives A361906, unequal case A361907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#<=2n&]],{n,30}]

A326673 The positions of ones in the reversed binary expansion of n have integer geometric mean.

Original entry on oeis.org

1, 2, 4, 8, 9, 11, 16, 32, 64, 128, 130, 138, 256, 257, 261, 264, 296, 388, 420, 512, 1024, 2048, 2052, 2084, 2306, 2316, 2338, 2348, 4096, 8192, 16384, 32768, 32769, 32776, 32777, 32899, 32904, 32907, 33024, 35072, 65536, 131072, 131074, 131084, 131106
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Examples

			The reversed binary expansion of 11 is (1,1,0,1) and {1,2,4} has integer geometric mean, so 11 is in the sequence.
		

Crossrefs

Partitions with integer geometric mean are A067539.
Subsets with integer geometric mean are A326027.
Factorizations with integer geometric mean are A326028.
Numbers whose binary digit positions have integer mean are A326669.
Numbers whose binary digit positions are relatively prime are A326674.
Numbers whose binary digit positions have integer geometric mean are A326672.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[GeometricMean[Join@@Position[Reverse[IntegerDigits[#,2]],1]]]&]
  • PARI
    ok(n)={ispower(prod(i=0, logint(n,2), if(bittest(n,i), i+1, 1)), hammingweight(n))}
    { for(n=1, 10^7, if(ok(n), print1(n, ", "))) } \\ Andrew Howroyd, Sep 29 2019

A359906 Number of integer partitions of n with integer mean and integer median.

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 2, 10, 9, 14, 2, 39, 2, 24, 51, 49, 2, 109, 2, 170, 144, 69, 2, 455, 194, 116, 381, 668, 2, 1378, 2, 985, 956, 316, 2043, 4328, 2, 511, 2293, 6656, 2, 8634, 2, 8062, 14671, 1280, 2, 26228, 8035, 15991, 11614, 25055, 2, 47201, 39810, 65092
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(9) = 9 partitions:
  1  2   3    4     5      6       7        8         9
     11  111  22    11111  33      1111111  44        333
              31           42               53        432
              1111         51               62        441
                           222              71        522
                           321              2222      531
                           411              3221      621
                           111111           3311      711
                                            5111      111111111
                                            11111111
		

Crossrefs

For just integer mean we have A067538, strict A102627, ranked by A316413.
For just integer median we have A325347, strict A359907, ranked by A359908.
These partitions are ranked by A360009.
A000041 counts partitions, strict A000009.
A058398 counts partitions by mean, see also A008284, A327482.
A051293 counts subsets with integer mean, median A000975.
A326567/A326568 gives mean of prime indices.
A326622 counts factorizations with integer mean, strict A328966.
A359893/A359901/A359902 count partitions by median.
A360005(n)/2 gives median of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], IntegerQ[Mean[#]]&&IntegerQ[Median[#]]&]],{n,1,30}]

A326537 MM-numbers of multiset partitions where each part has a different average.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

These are numbers where each prime index has a different average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where each part has a different average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  22: {{},{3}}
  23: {{2,2}}
  26: {{},{1,2}}
  29: {{1,3}}
  30: {{},{1},{2}}
  31: {{5}}
  33: {{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Mean/@primeMS/@primeMS[#]&]

A326643 Number of subsets of {1..n} whose mean and geometric mean are both integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 30, 31, 32, 33, 34, 35, 41, 46, 47, 70, 71, 72, 73, 74, 102, 103, 104, 105, 143, 144, 145, 146, 151, 152, 153, 154, 155, 161, 162, 163, 244, 252, 280, 281, 282, 283, 409, 410, 416, 417, 418, 419
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(1) = 1 through a(12) = 16 subsets:
  {1}  {1}  {1}  {1}  {1}  {1}  {1}  {1}    {1}    {1}    {1}    {1}
       {2}  {2}  {2}  {2}  {2}  {2}  {2}    {2}    {2}    {2}    {2}
            {3}  {3}  {3}  {3}  {3}  {3}    {3}    {3}    {3}    {3}
                 {4}  {4}  {4}  {4}  {4}    {4}    {4}    {4}    {4}
                      {5}  {5}  {5}  {5}    {5}    {5}    {5}    {5}
                           {6}  {6}  {6}    {6}    {6}    {6}    {6}
                                {7}  {7}    {7}    {7}    {7}    {7}
                                     {8}    {8}    {8}    {8}    {8}
                                     {2,8}  {9}    {9}    {9}    {9}
                                            {1,9}  {10}   {10}   {10}
                                            {2,8}  {1,9}  {11}   {11}
                                                   {2,8}  {1,9}  {12}
                                                          {2,8}  {1,9}
                                                                 {2,8}
                                                                 {3,6,12}
                                                                 {3,4,9,12}
		

Crossrefs

Partial sums of A326644.
Subsets whose geometric mean is an integer are A326027.
Subsets whose mean is an integer are A051293.
Partitions with integer mean and geometric mean are A326641.
Strict partitions with integer mean and geometric mean are A326029.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,10}]

Extensions

More terms from David Wasserman, Aug 03 2019

A360069 Number of integer partitions of n whose multiset of multiplicities has integer mean.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 9, 9, 13, 16, 25, 26, 39, 42, 62, 67, 95, 107, 147, 168, 225, 245, 327, 381, 471, 565, 703, 823, 1038, 1208, 1443, 1743, 2088, 2439, 2937, 3476, 4163, 4921, 5799, 6825, 8109, 9527, 11143, 13122, 15402, 17887, 20995, 24506, 28546, 33234, 38661
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (2111)   (51)      (61)       (62)
                            (11111)  (222)     (421)      (71)
                                     (321)     (2221)     (431)
                                     (2211)    (4111)     (521)
                                     (3111)    (211111)   (2222)
                                     (111111)  (1111111)  (3311)
                                                          (5111)
                                                          (221111)
                                                          (311111)
                                                          (11111111)
For example,  the partition (3,2,1,1,1,1) has multiplicities (1,1,4) with mean 2, so is counted under a(9). On the other hand, the partition (3,2,2,1,1) has multiplicities (1,2,2) with mean 5/3, so is not counted under a(9).
		

Crossrefs

These partitions are ranked by A067340 (prime signature has integer mean).
Parts instead of multiplicities: A067538, strict A102627, ranked by A316413.
The case where the parts have integer mean also is ranked by A359905.
A000041 counts integer partitions, strict A000009.
A051293 counts subsets with integer mean, median A000975.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature (A124010).
A326622 counts factorizations with integer mean, strict A328966.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], IntegerQ[Mean[Length/@Split[#]]]&]],{n,0,30}]

A360246 Numbers for which the prime indices do not have the same mean as the distinct prime indices.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A242416 in having 126.
Contains no squarefree numbers or perfect powers.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
The prime indices of 126 are {1,2,2,4} with mean 9/4 and distinct prime indices {1,2,4} with mean 7/3, so 126 is in the sequence.
		

Crossrefs

Signature instead of parts: complement A324570, counted by A114638.
Signature instead of distinct parts: complement A359903, counted by A360068.
These partitions are counted by A360242.
The complement is A360247, counted by A360243.
For median we have A360248, counted by A360244 (complement A360245).
Union of A360252 and A360253, counted by A360250 and A360251.
A058398 counts partitions by mean, also A327482.
A088529/A088530 gives mean of prime signature (A124010).
A112798 lists prime indices, length A001222, sum A056239.
A316413 = numbers whose prime indices have integer mean, distinct A326621.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]!=Mean[Union[prix[#]]]&]

A360247 Numbers for which the prime indices have the same mean as the distinct prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 121, 122, 123, 125, 127, 128, 129, 130
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A072774 in having 90.
First differs from A242414 in lacking 126.
Includes all squarefree numbers and perfect powers.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 900 are {3,3,2,2,1,1} with mean 2, and the distinct prime indices are {1,2,3} also with mean 2, so 900 is in the sequence.
		

Crossrefs

Signature instead of parts: A324570, counted by A114638.
Signature instead of distinct parts: A359903, counted by A360068.
These partitions are counted by A360243.
The complement is A360246, counted by A360242.
For median instead of mean the complement is A360248, counted by A360244.
For median instead of mean we have A360249, counted by A360245.
For greater instead of equal mean we have A360252, counted by A360250.
For lesser instead of equal mean we have A360253, counted by A360251.
A008284 counts partitions by number of parts, distinct A116608.
A058398 counts partitions by mean, also A327482.
A088529/A088530 gives mean of prime signature (A124010).
A112798 lists prime indices, length A001222, sum A056239.
A316413 = numbers whose prime indices have integer mean, distinct A326621.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.

Programs

  • Maple
    isA360247 := proc(n)
        local ifs,pidx,pe,meanAll,meanDist ;
        if n = 1 then
            return true ;
        end if ;
        ifs := ifactors(n)[2] ;
        # list of prime indices with multiplicity
        pidx := [] ;
        for pe in ifs do
            [numtheory[pi](op(1,pe)),op(2,pe)] ;
            pidx := [op(pidx),%] ;
        end do:
        meanAll := add(op(1,pe)*op(2,pe),pe=pidx) / add(op(2,pe),pe=pidx) ;
        meanDist := add(op(1,pe),pe=pidx) / nops(pidx) ;
        if meanAll = meanDist then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 130 do
        if isA360247(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==Mean[Union[prix[#]]]&]
Previous Showing 31-40 of 106 results. Next