cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 97 results. Next

A323092 Number of double-free integer partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 17, 24, 30, 40, 50, 66, 81, 104, 128, 161, 197, 246, 300, 369, 446, 546, 656, 796, 952, 1148, 1366, 1637, 1940, 2311, 2730, 3234, 3806, 4489, 5262, 6181, 7225, 8454, 9846, 11484, 13335, 15499, 17948, 20796, 24017, 27751, 31970, 36837
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Comments

An integer partition is double-free if no part is twice any other part.

Examples

			The a(1) = 1 through a(8) = 14 double-free integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (431)
                                               (4111)     (611)
                                               (31111)    (2222)
                                               (1111111)  (3311)
                                                          (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,2*#]=={}&]],{n,30}]

A220377 Number of partitions of n into three distinct and mutually relatively prime parts.

Original entry on oeis.org

1, 0, 2, 1, 3, 1, 6, 1, 7, 3, 7, 3, 14, 3, 15, 6, 14, 6, 25, 6, 22, 10, 25, 9, 42, 8, 34, 15, 37, 15, 53, 13, 48, 22, 53, 17, 78, 17, 65, 30, 63, 24, 99, 24, 88, 35, 84, 30, 126, 34, 103, 45, 103, 38, 166, 35, 124, 57, 128, 51, 184, 44, 150, 67, 172, 52, 218
Offset: 6

Views

Author

Carl Najafi, Dec 13 2012

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A005117 (strict), A014612 (triples), and A302696 (coprime). - Gus Wiseman, Oct 14 2020

Examples

			For n=10 we have three such partitions: 1+2+7, 1+4+5 and 2+3+5.
From _Gus Wiseman_, Oct 14 2020: (Start)
The a(6) = 1 through a(20) = 15 triples (empty column indicated by dot, A..H = 10..17):
321  .  431  531  532  731  543  751  743  753  754  971  765  B53  875
        521       541       651       752  951  853  B51  873  B71  974
                  721       732       761  B31  871  D31  954  D51  A73
                            741       851       952       972       A91
                            831       941       B32       981       B54
                            921       A31       B41       A71       B72
                                      B21       D21       B43       B81
                                                          B52       C71
                                                          B61       D43
                                                          C51       D52
                                                          D32       D61
                                                          D41       E51
                                                          E31       F41
                                                          F21       G31
                                                                    H21
(End)
		

Crossrefs

A023022 is the 2-part version.
A101271 is the relative prime instead of pairwise coprime version.
A220377*6 is the ordered version.
A305713 counts these partitions of any length, with Heinz numbers A302797.
A307719 is the non-strict version.
A337461 is the non-strict ordered version.
A337563 is the case with no 1's.
A337605 is the pairwise non-coprime instead of pairwise coprime version.
A001399(n-6) counts strict 3-part partitions, with Heinz numbers A007304.
A008284 counts partitions by sum and length, with strict case A008289.
A318717 counts pairwise non-coprime strict partitions.
A326675 ranks pairwise coprime sets.
A327516 counts pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length@Select[ IntegerPartitions[ n, {3}], #[[1]] != #[[2]] != #[[3]] && GCD[#[[1]], #[[2]]] == 1 && GCD[#[[1]], #[[3]]] == 1 && GCD[#[[2]], #[[3]]] == 1 &], {n, 6, 100}]
    Table[Count[IntegerPartitions[n,{3}],?(CoprimeQ@@#&&Length[ Union[#]] == 3&)],{n,6,100}] (* _Harvey P. Dale, May 22 2020 *)
  • PARI
    a(n)=my(P=partitions(n));sum(i=1,#P,#P[i]==3&&P[i][1]Charles R Greathouse IV, Dec 14 2012

Formula

a(n > 2) = A307719(n) - 1. - Gus Wiseman, Oct 15 2020

A333228 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

First differs from A291166 in lacking 69, which corresponds to the composition (4,2,1).
We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          21: (2,2,1)        39: (3,1,1,1)
   3: (1,1)        22: (2,1,2)        41: (2,3,1)
   5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
   6: (1,2)        24: (1,4)          44: (2,1,3)
   7: (1,1,1)      25: (1,3,1)        45: (2,1,2,1)
   9: (3,1)        26: (1,2,2)        46: (2,1,1,2)
  11: (2,1,1)      27: (1,2,1,1)      47: (2,1,1,1,1)
  12: (1,3)        28: (1,1,3)        48: (1,5)
  13: (1,2,1)      29: (1,1,2,1)      49: (1,4,1)
  14: (1,1,2)      30: (1,1,1,2)      50: (1,3,2)
  15: (1,1,1,1)    31: (1,1,1,1,1)    51: (1,3,1,1)
  17: (4,1)        33: (5,1)          52: (1,2,3)
  18: (3,2)        35: (4,1,1)        53: (1,2,2,1)
  19: (3,1,1)      37: (3,2,1)        54: (1,2,1,2)
  20: (2,3)        38: (3,1,2)        55: (1,2,1,1,1)
		

Crossrefs

Pairwise coprime or singleton partitions are A051424.
Coprime or singleton sets are ranked by A087087.
The version for relatively prime instead of coprime appears to be A291166.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
Not ignoring repeated parts gives A333227.
The complement is A335238.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@Union[stc[#]]&]

A302698 Number of integer partitions of n into relatively prime parts that are all greater than 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 2, 5, 4, 13, 7, 23, 18, 32, 33, 65, 50, 104, 92, 148, 153, 252, 226, 376, 376, 544, 570, 846, 821, 1237, 1276, 1736, 1869, 2552, 2643, 3659, 3887, 5067, 5509, 7244, 7672, 10086, 10909, 13756, 15168, 19195, 20735, 26237, 28708, 35418, 39207
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2018

Keywords

Comments

Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1 (which is impossible in this case).
The Heinz numbers of these partitions are given by A302697.

Examples

			The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
  (32)  .  (43)   (53)   (54)    (73)    (65)     (75)
           (52)   (332)  (72)    (433)   (74)     (543)
           (322)         (432)   (532)   (83)     (552)
                         (522)   (3322)  (92)     (732)
                         (3222)          (443)    (4332)
                                         (533)    (5322)
                                         (542)    (33222)
                                         (632)
                                         (722)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

A000837 is the version allowing 1's.
A002865 does not require relative primality.
A302697 gives the Heinz numbers of these partitions.
A337450 is the ordered version.
A337451 is the ordered strict version.
A337452 is the strict version.
A337485 is the pairwise coprime instead of relatively prime version.
A000740 counts relatively prime compositions.
A078374 counts relatively prime strict partitions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A332004 counts strict relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
A338332 is the case of length 3, with strict case A338333.

Programs

  • Maple
    b:= proc(n, i, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
          `if`(i<2, 0, b(n, i-1, g)+b(n-i, min(n-i, i), igcd(g, i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=1..60);  # Alois P. Heinz, Apr 12 2018
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&GCD@@#===1&]],{n,30}]
    (* Second program: *)
    b[n_, i_, g_] := b[n, i, g] = If[n == 0, If[g == 1, 1, 0], If[i < 2, 0, b[n, i - 1, g] + b[n - i, Min[n - i, i], GCD[g, i]]]];
    a[n_] := b[n, n, 0];
    Array[a, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = A002865(n) - A018783(n).

Extensions

Extended by Gus Wiseman, Oct 29 2020

A302796 Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts.

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 42, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 78, 82, 85, 86, 93, 94, 95, 102, 105, 106, 110, 114, 118, 119, 122, 123, 130, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 174, 177, 178, 182
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
42 : {1,2,4}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&GCD@@PrimePi/@FactorInteger[#][[All,1]]===1]&]
  • PARI
    isok(n) = {if (n == 1, return (1)); if (issquarefree(n), my(f = factor(n)); return (gcd(vector(#f~, k, primepi(f[k,1]))) == 1););} \\ Michel Marcus, Apr 13 2018

A305148 Number of integer partitions of n whose distinct parts are pairwise indivisible.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 12, 12, 17, 20, 22, 28, 35, 39, 48, 55, 65, 79, 90, 105, 121, 143, 166, 190, 219, 254, 290, 332, 382, 436, 493, 567, 637, 729, 824, 931, 1052, 1186, 1334, 1504, 1691, 1894, 2123, 2380, 2664, 2968, 3319, 3704, 4119, 4586, 5110
Offset: 0

Views

Author

Gus Wiseman, May 26 2018

Keywords

Examples

			The a(9) = 7 integer partitions are (9), (72), (54), (522), (333), (3222), (111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Union[#],2],UnsameQ@@#&&Divisible@@#&]=={}&]],{n,20}]

Extensions

More terms from Alois P. Heinz, May 26 2018

A304711 Heinz numbers of integer partitions whose distinct parts are pairwise coprime.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 80, 82, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108, 110
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.
First differs from A289509 at a(24) = 44, A289509(24) = 42.

Examples

			Sequence of all partitions whose distinct parts are pairwise coprime begins (1), (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]]&]

A337561 Number of pairwise coprime strict compositions of n, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

1, 1, 0, 2, 2, 4, 8, 6, 16, 12, 22, 40, 40, 66, 48, 74, 74, 154, 210, 228, 242, 240, 286, 394, 806, 536, 840, 654, 1146, 1618, 2036, 2550, 2212, 2006, 2662, 4578, 4170, 7122, 4842, 6012, 6214, 11638, 13560, 16488, 14738, 15444, 16528, 25006, 41002, 32802
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2020

Keywords

Examples

			The a(1) = 1 through a(9) = 12 compositions (empty column shown as dot):
   (1)  .  (1,2)  (1,3)  (1,4)  (1,5)    (1,6)  (1,7)    (1,8)
           (2,1)  (3,1)  (2,3)  (5,1)    (2,5)  (3,5)    (2,7)
                         (3,2)  (1,2,3)  (3,4)  (5,3)    (4,5)
                         (4,1)  (1,3,2)  (4,3)  (7,1)    (5,4)
                                (2,1,3)  (5,2)  (1,2,5)  (7,2)
                                (2,3,1)  (6,1)  (1,3,4)  (8,1)
                                (3,1,2)         (1,4,3)  (1,3,5)
                                (3,2,1)         (1,5,2)  (1,5,3)
                                                (2,1,5)  (3,1,5)
                                                (2,5,1)  (3,5,1)
                                                (3,1,4)  (5,1,3)
                                                (3,4,1)  (5,3,1)
                                                (4,1,3)
                                                (4,3,1)
                                                (5,1,2)
                                                (5,2,1)
		

Crossrefs

A072706 counts unimodal strict compositions.
A220377*6 counts these compositions of length 3.
A305713 is the unordered version.
A337462 is the not necessarily strict version.
A000740 counts relatively prime compositions, with strict case A332004.
A051424 counts pairwise coprime or singleton partitions.
A101268 considers all singletons to be coprime, with strict case A337562.
A178472 counts compositions with a common factor > 1.
A327516 counts pairwise coprime partitions, with strict case A305713.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||UnsameQ@@#&&CoprimeQ@@#&]],{n,0,10}]

Formula

a(n) = A337562(n) - 1 for n > 1.

A038348 Expansion of (1/(1-x^2))*Product_{m>=0} 1/(1-x^(2m+1)).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 49, 61, 76, 93, 114, 139, 168, 203, 244, 292, 348, 414, 490, 579, 682, 801, 938, 1097, 1278, 1487, 1726, 1999, 2311, 2667, 3071, 3531, 4053, 4644, 5313, 6070, 6923, 7886, 8971, 10190, 11561
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n+2 with exactly one even part. - Vladeta Jovovic, Sep 10 2003
Also, number of partitions of n with at most one even part. - Vladeta Jovovic, Sep 10 2003
Also total number of parts, counted without multiplicity, in all partitions of n into odd parts, offset 1. - Vladeta Jovovic, Mar 27 2005
a(n) = Sum_{k>=1} k*A116674(n+1,k). - Emeric Deutsch, Feb 22 2006
Equals row sums of triangle A173305. - Gary W. Adamson, Feb 15 2010
Equals partial sums of A025147 (observed by Jonathan Vos Post, proved by several correspondents).
Conjecture: The n-th derivative of Gamma(x+1) at x = 0 has a(n+1) terms. For example, d^4/dx^4_(x = 0) Gamma(x+1) = 8*eulergamma*zeta(3) + eulergamma^4 + eulergamma^2*Pi^2 + 3*Pi^4/20 which has a(5) = 4 terms. - David Ulgenes, Dec 05 2023

Examples

			From _Gus Wiseman_, Sep 23 2019: (Start)
Also the number of integer partitions of n that are strict except possibly for any number of 1's. For example, the a(1) = 1 through a(7) = 11 partitions are:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (31)    (32)     (42)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (311)    (321)     (61)
                            (2111)   (411)     (421)
                            (11111)  (3111)    (511)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (31111)
                                               (211111)
                                               (1111111)
(End)
		

Crossrefs

Programs

  • Maple
    f:=1/(1-x^2)/product(1-x^(2*j-1),j=1..32): fser:=series(f,x=0,62): seq(coeff(fser,x,n),n=0..58); # Emeric Deutsch, Feb 22 2006
  • Mathematica
    mmax = 47; CoefficientList[ Series[ (1/(1-x^2))*Product[1/(1-x^(2m+1)), {m, 0, mmax}], {x, 0, mmax}], x] (* Jean-François Alcover, Jun 21 2011 *)
  • SageMath
    # uses[EulerTransform from A166861]
    def g(n): return n % 2 if n > 2 else 1
    a = EulerTransform(g)
    print([a(n) for n in range(48)]) # Peter Luschny, Dec 04 2020

Formula

a(n) = A036469(n) - a(n-1) = Sum_{k=0..n} (-1)^k*A036469(n-k). - Vladeta Jovovic, Sep 10 2003
a(n) = A000009(n) + a(n-2). - Vladeta Jovovic, Feb 10 2004
G.f.: 1/((1-x^2)*Product_{j>=1} (1 - x^(2*j-1))). - Emeric Deutsch, Feb 22 2006
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ (1/2) * A036469(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). (End)
Euler transform of the sequence [1, 1, period(1, 0)] (A266591). - Georg Fischer, Dec 04 2020

A324756 Number of integer partitions of n containing no prime indices of the parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 7, 7, 9, 11, 16, 16, 24, 25, 34, 39, 50, 54, 70, 79, 96, 111, 135, 152, 186, 208, 249, 285, 335, 377, 448, 506, 588, 664, 777, 873, 1010, 1139, 1309, 1471, 1697, 1890, 2175, 2435, 2772, 3106, 3532, 3941, 4478, 4995, 5643, 6297, 7107, 7897
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

These could be described as anti-transitive integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(8) = 9 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (43)       (44)
                    (31)    (11111)  (42)      (52)       (71)
                    (1111)           (51)      (331)      (422)
                                     (222)     (511)      (2222)
                                     (3111)    (31111)    (3311)
                                     (111111)  (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The subset version is A324741, with maximal case A324743. The strict case is A324751. The Heinz number version is A324758. An infinite version is A324695.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
Previous Showing 11-20 of 97 results. Next