cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A051700 Distance from n to closest prime that is different from n.

Original entry on oeis.org

2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 1, 4, 1, 2, 3, 2, 1, 6, 1, 2, 3, 4, 3, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Keywords

Examples

			Closest primes to 0,1,2,3,4 are 2,2,3,2,3.
		

Crossrefs

Programs

  • Maple
    with(numtheory); f := n->min(nextprime(n)-n, n-prevprime(n));
  • Mathematica
    Table[Min[NextPrime[n]-n,n-NextPrime[n,-1]],{n,0,200}]  (* Harvey P. Dale, Mar 27 2011 *)

Extensions

More terms from James Sellers

A046930 Size of sea of composite numbers surrounding n-th prime.

Original entry on oeis.org

1, 1, 2, 4, 4, 4, 4, 4, 8, 6, 6, 8, 4, 4, 8, 10, 6, 6, 8, 4, 6, 8, 8, 12, 10, 4, 4, 4, 4, 16, 16, 8, 6, 10, 10, 6, 10, 8, 8, 10, 6, 10, 10, 4, 4, 12, 22, 14, 4, 4, 8, 6, 10, 14, 10, 10, 6, 6, 8, 4, 10, 22, 16, 4, 4, 16, 18, 14, 10, 4, 8, 12, 12, 10, 8, 8, 12, 10, 10, 16, 10, 10, 10, 6, 8, 8
Offset: 1

Views

Author

Keywords

Examples

			23 is in a sea of 8 composites: 20,21,22,23,24,25,26,27,28.
		

Crossrefs

Programs

  • Haskell
    a046930 1 = 1
    a046930 n = subtract 2 $ a031131 n  -- Reinhard Zumkeller, Dec 19 2013
  • Maple
    [ seq(ithprime(i)-ithprime(i-2)-2,i=3..100) ];
  • Mathematica
    Table[ Prime[n + 2] - Prime[n] - 2, {n, 75}] (* Robert G. Wilson v Oct 27 2004 *)
    Join[{1},#[[3]]-#[[1]]-2&/@Partition[Prime[Range[90]],3,1]] (* Harvey P. Dale, Sep 26 2012 *)

Formula

a(n) = A031131(n) - 2 for n > 1. - Reinhard Zumkeller, Dec 19 2013

Extensions

More terms from Michel ten Voorde

A051701 Closest prime to n-th prime p that is different from p (break ties by taking the smaller prime).

Original entry on oeis.org

3, 2, 3, 5, 13, 11, 19, 17, 19, 31, 29, 41, 43, 41, 43, 47, 61, 59, 71, 73, 71, 83, 79, 83, 101, 103, 101, 109, 107, 109, 131, 127, 139, 137, 151, 149, 151, 167, 163, 167, 181, 179, 193, 191, 199, 197, 199, 227, 229, 227, 229, 241, 239, 257, 251, 257, 271, 269
Offset: 1

Views

Author

Keywords

Comments

A227878 gives the terms occurring twice. - Reinhard Zumkeller, Oct 25 2013

Examples

			Closest primes to 2,3,5,7,11 are 3,2,3,5,13.
		

Crossrefs

Programs

  • Haskell
    a051701 n = a051701_list !! (n-1)
    a051701_list = f 2 $ 1 : a000040_list where
       f d (q:ps@(p:p':_)) = (if d <= d' then q else p') : f d' ps
         where d' = p' - p
    -- Reinhard Zumkeller, Oct 25 2013
    
  • Mathematica
    a[n_] := (p = Prime[n]; np = NextPrime[p]; pp = NextPrime[p, -1]; If[np-p < p-pp, np, pp]); Table[a[n], {n, 1, 58}] (* Jean-François Alcover, Oct 20 2011 *)
    cp[{a_,b_,c_}]:=If[c-bHarvey P. Dale, Oct 08 2012 *)
  • Python
    from sympy import nextprime
    def aupton(terms):
      prv, cur, nxt, alst = 0, 2, 3, []
      while len(alst) < terms:
        alst.append(prv if 2*cur - prv <= nxt else nxt)
        prv, cur, nxt = cur, nxt, nextprime(nxt)
      return alst
    print(aupton(58)) # Michael S. Branicky, Jun 04 2021

Extensions

More terms from James Sellers

A051698 Closest prime to n that is different from n (break ties by taking the smaller prime).

Original entry on oeis.org

2, 2, 3, 2, 3, 3, 5, 5, 7, 7, 11, 13, 11, 11, 13, 13, 17, 19, 17, 17, 19, 19, 23, 19, 23, 23, 23, 29, 29, 31, 29, 29, 31, 31, 31, 37, 37, 41, 37, 37, 41, 43, 41, 41, 43, 43, 47, 43, 47, 47, 47, 53, 53, 47, 53, 53, 53, 59, 59, 61, 59, 59, 61, 61, 61, 67, 67, 71, 67, 67, 71, 73
Offset: 0

Views

Author

Keywords

Examples

			Closest primes to 0,1,2,3,4 are 2,2,3,2,3.
		

Crossrefs

Programs

  • Mathematica
    cp[n_]:=Module[{p1=NextPrime[n,-1],p2=NextPrime[n]},If[p2-nHarvey P. Dale, Dec 11 2018 *)

Extensions

More terms from James Sellers

A051729 Smallest number at distance 2n+1 from nearest prime.

Original entry on oeis.org

1, 26, 118, 120, 532, 1140, 1340, 1342, 1344, 15702, 15704, 19632, 19634, 31424, 31426, 31428, 31430, 31432, 155958, 155960, 155962, 155964, 360698, 360700, 370310, 370312, 370314, 370316, 492170, 1349592, 1357262, 1357264, 1357266, 2010800, 2010802, 2010804, 2010806
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Table[0, {max}], c = 1, n = 4}, s[[1]] = 1; While[c < max, i = (Min[n - NextPrime[n, -1], NextPrime[n] - n] + 1)/2; If[i <= max && s[[i]] == 0, c++; s[[i]] = n]; n += 2]; s] ; seq[20] (* Amiram Eldar, Aug 28 2021 *)
    With[{tbl=Table[{n,If[PrimeQ[n],2,Min[n-NextPrime[n,-1],NextPrime[n]-n]]},{n,500000}]},Table[SelectFirst[tbl,#[[2]]==2k+1&],{k,0,28}]][[;;,1]] (* The program generates the first 29 terms of the sequence. *) (* Harvey P. Dale, Jul 06 2025 *)

Formula

a(n) = A051652(2*n+1). - Sean A. Irvine, Oct 01 2021

Extensions

More terms from James Sellers, Dec 07 1999
More terms from Amiram Eldar, Aug 28 2021

A023187 Distances of increasingly lonely primes to nearest prime.

Original entry on oeis.org

1, 2, 4, 6, 12, 14, 18, 20, 24, 30, 40, 42, 44, 48, 54, 62, 72, 76, 96, 98, 108, 116, 124, 136, 156, 160, 162, 168, 174, 176, 178, 180, 186, 194, 210, 214, 222, 242, 244, 246, 250, 258, 268, 284, 300, 324, 328, 340, 348, 352, 390, 396, 420, 432, 452, 480
Offset: 1

Views

Author

Keywords

Comments

These are the distances mentioned in A023186.

Examples

			The nearest prime to 23 is 4 units away, larger than any previous prime, so 4 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    t={}; max=p=0; q=2; Do[r=NextPrime[q]; If[(min=Min[q-p,r-q])>max, max=min; AppendTo[t,max]]; p=q; q=r, {n,828000}]; t (* Jayanta Basu, May 18 2013 *)

Extensions

More terms from Jud McCranie, Jun 16 2000
More terms from T. D. Noe, Jul 21 2006
More terms from Dmitry Petukhov, Oct 03 2015

A132861 Smallest number at distance 3n from nearest prime (variant 2).

Original entry on oeis.org

2, 26, 53, 532, 211, 1342, 2179, 15704, 16033, 31424, 24281, 31430, 31433, 155960, 58831, 360698, 206699, 370312, 370315, 492170, 1357261, 1357264, 1357267, 2010802, 2010805, 4652428, 12485141, 17051788, 17051791, 17051794, 11117213, 20831416, 10938023, 20831422
Offset: 0

Views

Author

R. J. Mathar, Nov 18 2007

Keywords

Comments

Let f(m) be the distance to the nearest prime as defined in A051700(m). Then a(n) = min {m: f(m) = 3n} for n > 0. A132470 uses A051699(m) to define the distance. a(n) <= A132470(n) because here primes at the start or end of a prime gap of size 3n may be picked, which would be discarded in A132470 for n>0; this gives a chance to minimize m here further than in A132470.

Crossrefs

Programs

  • Maple
    A051700 := proc(m) if m <= 2 then op(m+1,[2,1,1]) ; else min(nextprime(m)-m,m-prevprime(m)) ; fi ; end: a := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = 3 * n then RETURN(m) ; fi ; od: fi ; end: seq(a(n),n=0..18);
  • Python
    # see link for faster program
    from sympy import prevprime, nextprime
    def A051700(n):
      return [2, 1, 1][n] if n < 3 else min(n-prevprime(n), nextprime(n)-n)
    def a(n):
      if n == 0: return 2
      m = 0
      while A051700(m) != 3*n: m += 1
      return m
    print([a(n) for n in range(13)]) # Michael S. Branicky, Feb 26 2021

Formula

a(n) = min {m : A051700(m) = 3n} for n > 0.
a(n) = A051652(3*n). [From R. J. Mathar, Jul 22 2009]

Extensions

7 more terms from R. J. Mathar, Jul 22 2009
4 more terms from R. J. Mathar, Aug 21 2018
a(30) and beyond and edits from Michael S. Branicky, Feb 26 2021

A309877 a(n) is the smallest number k such that the difference between the next prime greater than k and k equals n.

Original entry on oeis.org

1, 0, 8, 7, 24, 23, 90, 89, 118, 117, 116, 115, 114, 113, 526, 525, 524, 523, 888, 887, 1130, 1129, 1338, 1337, 1336, 1335, 1334, 1333, 1332, 1331, 1330, 1329, 1328, 1327, 9552, 9551, 15690, 15689, 15688, 15687, 15686, 15685, 15684, 15683, 19616, 19615, 19614, 19613, 19612, 19611
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2019

Keywords

Examples

			+------+------+-----+
| a(n) | next | gap |
|      | prime|     |
+------+------+-----+
|   1  |   2  |  1  |
|   0  |   2  |  2  |
|   8  |  11  |  3  |
|   7  |  11  |  4  |
|  24  |  29  |  5  |
|  23  |  29  |  6  |
|  90  |  97  |  7  |
|  89  |  97  |  8  |
+------+------+-----+
		

Crossrefs

Programs

  • Maple
    N:= 100:
    A:= Vector(N,-1):
    count:= 0: lastp:= 0:
    while count < N do
      p:= nextprime(lastp);
      newvals:= select(t -> A[t]=-1, [$1..min(p-lastp,N)]);
      count:= count+nops(newvals);
      for k in newvals do A[k]:= p-k od;
      lastp:= p;
    od:
    convert(A,list); # Robert Israel, Aug 23 2019
  • Mathematica
    Table[SelectFirst[Range[0, 20000], NextPrime[#] - # == n &], {n, 1, 50}]
    Module[{nn=20000,d},d=Table[{n,NextPrime[n]-n},{n,0,nn}];Table[SelectFirst[d,#[[2]]==k&],{k,50}]][[;;,1]] (* Harvey P. Dale, Mar 23 2025 *)
  • PARI
    a(n) = my(k=0); while(nextprime(k+1) - k != n, k++); k; \\ Michel Marcus, Aug 21 2019

Formula

a(n) = min {k : A013632(k) = n}.
Previous Showing 11-18 of 18 results.