A219051
Numbers k such that 3^k - 34 is prime.
Original entry on oeis.org
4, 7, 11, 13, 29, 32, 36, 44, 79, 157, 197, 341, 467, 996, 1421, 2479, 3269, 5203, 7987, 9341, 14836, 26047, 47816, 64304, 100693, 127597, 167167, 174697, 182089, 198791
Offset: 1
For k = 4, 3^4 - 34 = 47 and 47 is prime. Hence k = 4 is included in the sequence.
Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 32)
A219048, (m = -32)
A219049, (m = 34)
A219050, (m = -34)
A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.
A087885
Numbers k such that 5^k + 2 is a prime.
Original entry on oeis.org
0, 1, 3, 17, 143, 261, 551, 2285, 18731, 18995, 19751, 62067, 98051, 169727, 442281
Offset: 1
a(3)=3 is a term because 5^3 + 2 = 127 is a prime.
5^17 + 2 = 762939453127 is prime, hence 17 is a term.
-
Do[If[PrimeQ[5^n + 2], Print[n]], {n, 1, 10000}] (* Ryan Propper, Jun 17 2005 *)
-
for(n=0, 10^5, if(ispseudoprime(5^n+2), print1(n, ", "))) \\ Felix Fröhlich, Jun 04 2014
A090649
Numbers k such that 9^k + 2 is prime.
Original entry on oeis.org
0, 1, 2, 4, 5, 7, 12, 13, 18, 49, 55, 63, 193, 247, 610, 929, 2173, 3479, 5494, 11158, 16754, 30920, 47752, 50702, 53725, 68122, 89214, 180804
Offset: 1
Herman H. Rosenfeld (herm3(AT)pacbell.net), Feb 02 2004
9^13 + 2 = 2541865828331 is prime, so 13 is a term.
-
Do[ If[ PrimeQ[9^n + 2], Print[n]], {n, 1, 2250}] (* Robert G. Wilson v, Feb 06 2004 *)
-
for(i=0,700,if(isprime(9^i+2),print(i)))
More terms from mohammed bouayoun (bouyao(AT)wanadoo.fr), Feb 04 2004
Removal of erroneous term (97715) by
Robert Price, Aug 19 2014
A087886
Numbers n such that 29^n + 2 is prime.
Original entry on oeis.org
0, 1, 3, 63, 87, 189, 239, 605, 2099, 3667, 5029, 20025, 45285, 99167
Offset: 1
a(1) = 1 is a member because 29^1 + 2 = 31 is prime.
29^3+2 = 24391 is prime, so 3 is in the sequence.
Cf.
A051783, n such that 3^n +2 is prime.
-
for( n = 0,239, if( isprime( 29^n +2), print( n), ))
a(8) from Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 07 2004
a(9) - a(11), corresponding to probable primes, from
Ryan Propper, Jul 03 2005
A247957
Numbers k such that 33^k + 2 is prime.
Original entry on oeis.org
0, 2, 26, 60, 218, 248, 399, 1175, 1244, 2670, 9300, 45216, 144412
Offset: 1
Cf. numbers n such that k^n+2 is prime:
A051783 (k=3),
A087885 (k=5),
A090649 (k=9),
A109076 (k=11),
A138048 (k=15),
A113480 (k=17),
A138049 (k=21),
A138050 (k=23),
A138051 (k=27),
A087886 (k=29), this sequence (k=33),
A247958 (k=35),
A247959 (k=39),
A247960 (k=41),
A247961 (k=45); (0, 113) for k=47;
A247962 (k=51);
A247963 (k=57),
A113481 (k=59).
A138048
Numbers k such that 15^k + 2 is prime.
Original entry on oeis.org
0, 1, 2, 4, 5, 10, 11, 16, 20, 52, 75, 106, 112, 132, 371, 3264, 3424, 5477, 7516, 10365, 44557, 150706
Offset: 1
Cf.
A051783 (k such that 3^k + 2 is prime).
Cf.
A087885 (k such that 5^k + 2 is prime).
-
Do[ f = 15^n + 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n, 1, 371} ]
-
is(n)=ispseudoprime(15^n+2) \\ Charles R Greathouse IV, Feb 17 2017
a(20) found by Lelio R Paula, Dec 2006
A138049
Numbers k such that 21^k + 2 is prime.
Original entry on oeis.org
0, 1, 2, 4, 7, 24, 40, 112, 310, 1026, 1286, 36566, 43717, 53753
Offset: 1
Cf.
A051783 (k such that 3^k + 2 is prime).
Cf.
A087885 (k such that 5^k + 2 is prime).
-
Do[ f = 21^n + 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n, 1, 310} ]
-
is(n)=ispseudoprime(21^n+2) \\ Charles R Greathouse IV, Feb 17 2017
1026 from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
A138050
Numbers k such that 23^k + 2 is prime.
Original entry on oeis.org
0, 11, 39, 323, 12415, 14655, 27679
Offset: 1
Cf.
A051783 (k such that 3^k + 2 is prime).
Cf.
A087885 (k such that 5^k + 2 is prime).
-
Do[ f = 23^n + 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n, 1, 323} ]
-
is(n)=ispseudoprime(23^n+2) \\ Charles R Greathouse IV, Feb 17 2017
A138051
Numbers k such that 27^k + 2 is prime.
Original entry on oeis.org
0, 1, 5, 8, 12, 21, 41, 42, 81, 105, 121, 377, 501, 2401, 14597, 35381, 59476, 120536
Offset: 1
-
Do[ f = 27^n + 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n, 1, 2500} ]
-
is(n)=ispseudoprime(27^n+2) \\ Charles R Greathouse IV, Feb 17 2017
A134916
Numbers n such that both 3^n+2 and 2^n+3 are primes.
Original entry on oeis.org
-
Select[Range[20],AllTrue[{3^#+2,2^#+3},PrimeQ]&] (* Harvey P. Dale, Sep 02 2022 *)
-
for(n=0,1000,if(isprime(2^n+3)&&isprime(3^n+2),print(n)))
Comments