cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A008730 Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019

Formula

G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A095894 a(2n) = 6*n^2 + 7*n + 1; a(2n+1) = 6*n^2 + 13*n + 7.

Original entry on oeis.org

1, 7, 14, 26, 39, 57, 76, 100, 125, 155, 186, 222, 259, 301, 344, 392, 441, 495, 550, 610, 671, 737, 804, 876, 949, 1027, 1106, 1190, 1275, 1365, 1456, 1552, 1649, 1751, 1854, 1962, 2071, 2185, 2300, 2420, 2541, 2667, 2794, 2926, 3059, 3197, 3336, 3480
Offset: 0

Views

Author

Gary W. Adamson, Jun 11 2004

Keywords

Comments

From Omar E. Pol, Jul 18 2012: (Start)
Positive terms of A051866 and positive terms of A049453 interleaved.
Also sequence found by reading the line from 1, in the direction 1, 14, ..., and the line from 7, in the direction 7, 26, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. (End)

Crossrefs

Cf. A047225 (first differences), A049453, A051866.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{1,7,14,26},60] (* Harvey P. Dale, Oct 13 2016 *)
  • PARI
    x='x+O('x^50); Vec((-1-5*x)/((1+x)*(x-1)^3)) \\ G. C. Greubel, Jun 19 2017

Formula

G.f.: ( -1-5*x ) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Oct 26 2011

Extensions

Edited by Don Reble, Nov 16 2005

A256646 26-gonal pyramidal numbers: a(n) = n*(n+1)*(8*n-7)/2.

Original entry on oeis.org

0, 1, 27, 102, 250, 495, 861, 1372, 2052, 2925, 4015, 5346, 6942, 8827, 11025, 13560, 16456, 19737, 23427, 27550, 32130, 37191, 42757, 48852, 55500, 62725, 70551, 79002, 88102, 97875, 108345, 119536, 131472, 144177, 157675, 171990, 187146, 203167, 220077
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (24th row of the table).

Crossrefs

Partial sums of A255185.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(8*n-7)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
    
  • Mathematica
    Table[n (n + 1) (8 n - 7)/2, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 27, 102}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
  • SageMath
    [(8*n-7)*binomial(n+1,2) for n in range(51)] # G. C. Greubel, Jul 12 2024

Formula

G.f.: x*(1 + 23*x)/(1 - x)^4.
a(n) = A000292(n) + 23*A000292(n-1).
a(n) = n*A051866(n) - Sum_{i=0..n-1} A051866(i). - Bruno Berselli, Apr 09 2015
Sum_{n>=1} 1/a(n) = 2*(4*(sqrt(2)+1)*Pi - 4*(sqrt(2)-8)*log(2) + 8*sqrt(2)*log(sqrt(2)+2) - 7)/105. - Amiram Eldar, Jan 10 2022
E.g.f.: (1/2)*x*(2 + 25*x + 8*x^2)*exp(x). - G. C. Greubel, Jul 12 2024

A322124 Numbers k such that m = 24k^2 + 4k + 73 and 6m - 5 are both primes.

Original entry on oeis.org

1, 22, 25, 28, 36, 42, 43, 57, 63, 84, 105, 127, 183, 207, 211, 217, 249, 259, 295, 393, 396, 417, 421, 480, 508, 546, 613, 624, 652, 673, 760, 798, 799, 816, 903, 945, 963, 1054, 1222, 1254, 1330, 1338, 1443, 1506, 1513, 1653, 1656, 1716, 1824, 1975, 2031
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2018

Keywords

Comments

Rotkiewicz proved that if k is in this sequence, and m = 24k^2 + 4k + 73, then m*(6m - 5) is a tetradecagonal Fermat pseudoprime to base 2 (A322123), and thus under Schinzel's Hypothesis H there are infinitely many tetradecagonal Fermat pseudoprimes to base 2.
The corresponding pseudoprimes are 60701, 832127489, 1381243709, 2166133001, 5885873641, 10876592689, 11945978741, ...

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[24#^2 + 4# + 73] && PrimeQ[144#^2 + 24# + 433]  &]
  • PARI
    isok(n) = isprime(m=24n^2+4n+73) && isprime(6*m-5); \\ Michel Marcus, Nov 28 2018

A193516 T(n,k) = number of ways to place any number of 4X1 tiles of k distinguishable colors into an nX1 grid.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 7, 5, 1, 1, 1, 6, 9, 10, 9, 7, 1, 1, 1, 7, 11, 13, 13, 15, 10, 1, 1, 1, 8, 13, 16, 17, 25, 25, 14, 1, 1, 1, 9, 15, 19, 21, 37, 46, 39, 19, 1, 1, 1, 10, 17, 22, 25, 51, 73, 76, 57, 26, 1, 1, 1, 11, 19, 25, 29, 67, 106, 125
Offset: 1

Views

Author

R. H. Hardin, with proof and formula from Robert Israel in the Sequence Fans Mailing List, Jul 29 2011

Keywords

Comments

Table starts:
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..2...3...4...5....6....7....8....9...10...11...12....13....14....15....16
..3...5...7...9...11...13...15...17...19...21...23....25....27....29....31
..4...7..10..13...16...19...22...25...28...31...34....37....40....43....46
..5...9..13..17...21...25...29...33...37...41...45....49....53....57....61
..7..15..25..37...51...67...85..105..127..151..177...205...235...267...301
.10..25..46..73..106..145..190..241..298..361..430...505...586...673...766
.14..39..76.125..186..259..344..441..550..671..804...949..1106..1275..1456
.19..57.115.193..291..409..547..705..883.1081.1299..1537..1795..2073..2371
.26..87.190.341..546..811.1142.1545.2026.2591.3246..3997..4850..5811..6886
.36.137.328.633.1076.1681.2472.3473.4708.6201.7976.10057.12468.15233.18376

Examples

			Some solutions for n=9 k=3; colors=1, 2, 3; empty=0
..0....3....0....0....3....3....0....0....0....0....2....2....0....0....1....2
..1....3....0....2....3....3....3....0....0....0....2....2....1....0....1....2
..1....3....0....2....3....3....3....2....0....0....2....2....1....0....1....2
..1....3....3....2....3....3....3....2....1....0....2....2....1....0....1....2
..1....0....3....2....0....3....3....2....1....0....2....0....1....0....0....0
..2....3....3....2....0....3....3....2....1....3....2....2....0....0....0....3
..2....3....3....2....0....3....3....0....1....3....2....2....0....0....0....3
..2....3....0....2....0....3....3....0....0....3....2....2....0....0....0....3
..2....3....0....2....0....0....3....0....0....3....0....2....0....0....0....3
		

Crossrefs

Column 1 is A003269(n+1),
Column 2 is A052942,
Column 3 is A143454(n-3),
Row 8 is A082111,
Row 9 is A100536(n+1),
Row 10 is A051866(n+1).

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n<0, 0,
          `if`(n<4 or k=0, 1, k*T(n-4, k) +T(n-1, k)))
        end:
    seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 4 || k == 0, 1, k*T[n-4, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1.
T(n,k) = sum {s=0..[n/4]} (binomial(n-3*s,s)*k^s).
For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011

A373617 Positive integers that cannot be written as a sum of a practical number and a 14-gonal number.

Original entry on oeis.org

10, 11, 14, 23, 27, 35, 39, 52, 53, 58, 76, 83, 107, 115, 125, 138, 152, 175, 178, 186, 223, 227, 262, 297, 357, 358, 373, 383, 411, 491, 502, 527, 530, 555, 788, 818, 843, 877, 915, 933, 962, 1052, 1073, 1163, 1207, 1258, 1275, 1354, 1423, 1608, 1622, 1647
Offset: 1

Views

Author

Duc Van Khanh Tran, Jun 11 2024

Keywords

Comments

Somu and Tran (2024) conjectured that there are finitely many such integers. It was also conjectured that 106878 is the largest such integer. This conjecture was checked up to 10^8.

Crossrefs

A270704 Even 14-gonal (or tetradecagonal) numbers.

Original entry on oeis.org

0, 14, 76, 186, 344, 550, 804, 1106, 1456, 1854, 2300, 2794, 3336, 3926, 4564, 5250, 5984, 6766, 7596, 8474, 9400, 10374, 11396, 12466, 13584, 14750, 15964, 17226, 18536, 19894, 21300, 22754, 24256, 25806, 27404, 29050, 30744, 32486, 34276, 36114, 38000
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2016

Keywords

Comments

First bisection of A051866.
More generally, the ordinary generating function for the even k-gonal numbers with even k or for the first bisection of k-gonal numbers, is (k*x + (3*k - 8)*x^2)/(1 - x )^3.

Crossrefs

Cf. similar sequences of the even k-gonal numbers with even k: A016742 (k = 4), A014635 (k = 6), A014642 (k = 8), A028994 (k = 10), A193872 (k = 12).

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 14, 76}, 41]
    Table[2 n (12 n - 5), {n, 0, 40}]
    PolygonalNumber[14,Range[0,80,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2017 *)
  • PARI
    concat(0, Vec(2*x*(7 + 17*x)/(1 - x)^3 + O(x^60))) \\ Michel Marcus, Mar 22 2016

Formula

G.f.: 2*x*(7 + 17*x)/(1 - x)^3.
E.g.f.: 2*exp(x)*x*(7 + 12*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*n*(12*n - 5).
a(n) = A005843(n)*A017605(n-1).
Sum_{n>=1} 1/a(n) = (Pi - sqrt(3)*Pi + sqrt(3)*log(27) + sqrt(3)*log(64) + log(1728) + 6*log(sqrt(3)-1) + 2*sqrt(3)*log(sqrt(3)-1) - 6*log(sqrt(3)+1) - 2*sqrt(3)*log(sqrt(3)+1))/(20 + 20*sqrt(3)) = 0.102542837854…

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
Offset: 1

Views

Author

Robert G. Wilson v, Apr 27 2020

Keywords

Comments

\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.

Crossrefs

Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.

Programs

  • Mathematica
    Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten

Formula

P(r, c) = (r - 2)(c(c-1)/2) + c.
Previous Showing 21-28 of 28 results.