A116647
Triangle of number of partitions that fit in an n X n box (but not in an (n-1) X (n-1) box) with Durfee square k.
Original entry on oeis.org
1, 3, 1, 5, 8, 1, 7, 27, 15, 1, 9, 64, 84, 24, 1, 11, 125, 300, 200, 35, 1, 13, 216, 825, 1000, 405, 48, 1, 15, 343, 1911, 3675, 2695, 735, 63, 1, 17, 512, 3920, 10976, 12740, 6272, 1232, 80, 1, 19, 729, 7344, 28224, 47628, 37044, 13104, 1944, 99, 1, 21, 1000, 12825
Offset: 1
Triangle begins
1;
3, 1;
5, 8, 1;
7, 27, 15, 1;
9, 64, 84, 24, 1;
11, 125, 300, 200, 35, 1;
-
Table[Binomial[n, k]^2 - Binomial[n - 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Nov 20 2017 *)
-
for(n=1,10, for(k=0,n, print1(binomial(n,k)^2 - binomial(n-1,k)^2, ", "))) \\ G. C. Greubel, Nov 20 2017
A325228
Number of integer partitions of n such that the lesser of the maximum part and the number of parts is 3.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 6, 9, 13, 16, 20, 24, 28, 32, 38, 42, 48, 54, 60, 66, 74, 80, 88, 96, 104, 112, 122, 130, 140, 150, 160, 170, 182, 192, 204, 216, 228, 240, 254, 266, 280, 294, 308, 322, 338, 352, 368, 384, 400, 416, 434, 450, 468, 486, 504, 522, 542, 560
Offset: 1
The a(5) = 1 through a(10) = 16 partitions:
(311) (321) (322) (332) (333) (433)
(411) (331) (422) (432) (442)
(3111) (421) (431) (441) (532)
(511) (521) (522) (541)
(3211) (611) (531) (622)
(31111) (3221) (621) (631)
(3311) (711) (721)
(32111) (3222) (811)
(311111) (3321) (3322)
(32211) (3331)
(33111) (32221)
(321111) (33211)
(3111111) (322111)
(331111)
(3211111)
(31111111)
-
Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==3&]],{n,30}]
A337499
a(n) is the number of ballot sequences of length n tied or won by at most 2 votes.
Original entry on oeis.org
1, 2, 4, 6, 14, 20, 50, 70, 182, 252, 672, 924, 2508, 3432, 9438, 12870, 35750, 48620, 136136, 184756, 520676, 705432, 1998724, 2704156, 7696444, 10400600, 29716000, 40116600, 115000920, 155117520, 445962870
Offset: 0
Bisections give
A000984 (odd part, starting from second element),
A051924 (even part).
-
f:= gfun:-rectoproc({(4 + 4*n)*a(n) + (-12 - 4*n)*a(1 + n) + (-22 - 5*n)*a(2 + n) + (n + 4)*a(n + 3) + (6 + n)*a(n + 4), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 6},a(n),remember):
map(f, [$0..100]); # Robert Israel, Oct 08 2020
A220956
(Binomial(2n, n) - binomial(2n - 2, n - 1)) (mod n^2) - n - 2.
Original entry on oeis.org
-3, -4, 0, -4, 0, 16, 0, 20, 18, 24, 0, -10, 0, 32, 28, 100, 0, 148, 0, 198, 403, 48, 0, 82, 250, 56, 18, 138, 0, 752, 0, 644, 436, 72, 705, 950, 0, 80, 369, 1178, 0, 1468, 0, 1322, 448, 96, 0, 1930, 1029, 1104, 766, 146, 0, 2488, 1680, 478, 3058, 120, 0, 2674, 0
Offset: 1
a(8)=20 since C(16,8) - C(14,7) (mod 64) = (12870 - 3432) (mod 64) = 9438 (mod 64) = 30 and 30 -8 -2 = 20.
-
[(Binomial(2*n,n)-Binomial(2*n-2,n-1)) mod n^2-n-2: n in [1..70]]; // Bruno Berselli, Feb 21 2013
-
f[n_] := Mod[Binomial[2 n, n] - Binomial[2 n - 2, n - 1], n^2] - n - 2; Array[f, 61]
A345013
Triangle read by rows, related to clusters of type D.
Original entry on oeis.org
1, 4, 3, 15, 20, 6, 56, 105, 60, 10, 210, 504, 420, 140, 15, 792, 2310, 2520, 1260, 280, 21, 3003, 10296, 13860, 9240, 3150, 504, 28, 11440, 45045, 72072, 60060, 27720, 6930, 840, 36
Offset: 1
Triangle begins:
[1] 1
[2] 4, 3
[3] 15, 20, 6
[4] 56, 105, 60, 10
[5] 210, 504, 420, 140, 15
[6] 792, 2310, 2520, 1260, 280, 21
[7] 3003, 10296, 13860, 9240, 3150, 504, 28
...
-
row(n) = vector(n, k, k--; (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n); \\ Michel Marcus, Sep 30 2021
-
def T_row(n):
return [(n-k)*binomial(n,k)*binomial(2*n-k,n-1)//n for k in range(n)]
for n in range(1, 8): print(T_row(n))
A241188
Triangle T(n,s) of Dynkin type D_n read by rows (n >= 2, 0 <= s <= n).
Original entry on oeis.org
1, 2, 1, 1, 3, 5, 5, 1, 4, 9, 16, 20, 1, 5, 14, 30, 55, 77, 1, 6, 20, 50, 105, 196, 294, 1, 7, 27, 77, 182, 378, 714, 1122, 1, 8, 35, 112, 294, 672, 1386, 2640, 4290, 1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445
Offset: 2
Triangle begins:
1, 2, 1,
1, 3, 5, 5,
1, 4, 9, 16, 20,
1, 5, 14, 30, 55, 77,
1, 6, 20, 50, 105, 196, 294,
1, 7, 27, 77, 182, 378, 714, 1122,
1, 8, 35, 112, 294, 672, 1386, 2640, 4290,
1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445,
...
- M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014.
- M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, arXiv:1403.5827 [math.RT], 2014 and J. Int. Seq. 18 (2015) 15.10.6.
See
A009766 for the case of type A.
See
A059481 for the case of type B/C.
-
f[t_, s_] := Binomial[t, s] (s + t)/t;
T[, 0] = 1; T[n, n_] := f[2 n - 2, n - 2]; T[n_, s_] := f[n + s - 2, s];
Table[T[n, s], {n, 2, 9}, {s, 0, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)
A337500
a(n) is the number of ballot sequences of length n tied or won by at most 3 votes.
Original entry on oeis.org
1, 2, 4, 8, 14, 30, 50, 112, 182, 420, 672, 1584, 2508, 6006, 9438, 22880, 35750, 87516, 136136, 335920, 520676, 1293292, 1998724, 4992288, 7696444, 19315400, 29716000, 74884320, 115000920, 290845350, 445962870
Offset: 0
Bisections give
A162551 (odd part, starting from second element),
A051924 (even part).
A352184
Coxeter-Catalan numbers for the Coxeter groups A_0, A_1, A_2, A_3 = D_3, D_4, D_5, E_6, E_7, E_8.
Original entry on oeis.org
1, 2, 5, 14, 50, 182, 833, 4160, 25080
Offset: 0
A378377
Triangle read by rows: T(n,k) is the number of non-descending sequences with length k such that the maximum of the length and the last number is n.
Original entry on oeis.org
1, 1, 3, 1, 3, 10, 1, 4, 10, 35, 1, 5, 15, 35, 126, 1, 6, 21, 56, 126, 462, 1, 7, 28, 84, 210, 462, 1716, 1, 8, 36, 120, 330, 792, 1716, 6435, 1, 9, 45, 165, 495, 1287, 3003, 6435, 24310, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 92378
Offset: 1
Triangle begins:
1
1 3
1 3 10
1 4 10 35
1 5 15 35 126
1 6 21 56 126 462
1 7 28 84 210 462 1716
...
For T(3,1) solution is |{(3)}| = 1.
For T(3,2) solution is |{(1,3), (2,3), (3,3)}| = 3.
For T(3,3) solution is |{(1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,3), (3,3,3)}| = 10.
-
T[n_, k_] := Which[
k == 1, 1,
k == n, Binomial[2n-1, n],
k == n-1, T[n-1, n-1],
1 < k < n-1, T[n-1, k] + T[n, k-1]
];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
-
T(n,k)={if(kAndrew Howroyd, Nov 24 2024
Comments