cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A116647 Triangle of number of partitions that fit in an n X n box (but not in an (n-1) X (n-1) box) with Durfee square k.

Original entry on oeis.org

1, 3, 1, 5, 8, 1, 7, 27, 15, 1, 9, 64, 84, 24, 1, 11, 125, 300, 200, 35, 1, 13, 216, 825, 1000, 405, 48, 1, 15, 343, 1911, 3675, 2695, 735, 63, 1, 17, 512, 3920, 10976, 12740, 6272, 1232, 80, 1, 19, 729, 7344, 28224, 47628, 37044, 13104, 1944, 99, 1, 21, 1000, 12825
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins
   1;
   3,   1;
   5,   8,   1;
   7,  27,  15,   1;
   9,  64,  84,  24,   1;
  11, 125, 300, 200,  35,   1;
		

Crossrefs

Cf. A008459; row sums A051924.

Programs

  • Mathematica
    Table[Binomial[n, k]^2 - Binomial[n - 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Nov 20 2017 *)
  • PARI
    for(n=1,10, for(k=0,n, print1(binomial(n,k)^2 - binomial(n-1,k)^2, ", "))) \\ G. C. Greubel, Nov 20 2017

Formula

T(n,k) = binomial(n,k)^2 - binomial(n-1,k)^2.

A325228 Number of integer partitions of n such that the lesser of the maximum part and the number of parts is 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 9, 13, 16, 20, 24, 28, 32, 38, 42, 48, 54, 60, 66, 74, 80, 88, 96, 104, 112, 122, 130, 140, 150, 160, 170, 182, 192, 204, 216, 228, 240, 254, 266, 280, 294, 308, 322, 338, 352, 368, 384, 400, 416, 434, 450, 468, 486, 504, 522, 542, 560
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (311)  (321)   (322)    (332)     (333)      (433)
         (411)   (331)    (422)     (432)      (442)
         (3111)  (421)    (431)     (441)      (532)
                 (511)    (521)     (522)      (541)
                 (3211)   (611)     (531)      (622)
                 (31111)  (3221)    (621)      (631)
                          (3311)    (711)      (721)
                          (32111)   (3222)     (811)
                          (311111)  (3321)     (3322)
                                    (32211)    (3331)
                                    (33111)    (32221)
                                    (321111)   (33211)
                                    (3111111)  (322111)
                                               (331111)
                                               (3211111)
                                               (31111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==3&]],{n,30}]

A337499 a(n) is the number of ballot sequences of length n tied or won by at most 2 votes.

Original entry on oeis.org

1, 2, 4, 6, 14, 20, 50, 70, 182, 252, 672, 924, 2508, 3432, 9438, 12870, 35750, 48620, 136136, 184756, 520676, 705432, 1998724, 2704156, 7696444, 10400600, 29716000, 40116600, 115000920, 155117520, 445962870
Offset: 0

Views

Author

Nachum Dershowitz, Aug 29 2020

Keywords

Comments

Also the number of n-step walks on a path graph ending within 2 steps of the origin. Also the number of monotonic paths of length n ending within 2 steps of the diagonal.

Crossrefs

Bisections give A000984 (odd part, starting from second element), A051924 (even part).

Programs

  • Maple
    f:= gfun:-rectoproc({(4 + 4*n)*a(n) + (-12 - 4*n)*a(1 + n) + (-22 - 5*n)*a(2 + n) + (n + 4)*a(n + 3) + (6 + n)*a(n + 4), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 6},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Oct 08 2020

Formula

a(n) = A128014(n+1) + ((n+1) mod 2)*2*A001791(ceiling(n/2)).
D-finite with recurrence +(n+2)*a(n) +n*a(n-1) +(-5*n-2)*a(n-2) +4*(-n+1)*a(n-3) +4*(n-3)*a(n-4)=0. - Conjectured by R. J. Mathar, Sep 27 2020, verified by Robert Israel, Oct 08 2020
G.f.: ((4*x + 2)*sqrt(-4*x^2 + 1) + 4*x^2 + 4*x + 2)/(sqrt(-4*x^2 + 1)*(1 + sqrt(-4*x^2 + 1))^2). - Robert Israel, Oct 08 2020
a(n) ~ 2^(n - 1/2) * (5 + (-1)^n) / sqrt(Pi*n). - Vaclav Kotesovec, Mar 08 2023

A220956 (Binomial(2n, n) - binomial(2n - 2, n - 1)) (mod n^2) - n - 2.

Original entry on oeis.org

-3, -4, 0, -4, 0, 16, 0, 20, 18, 24, 0, -10, 0, 32, 28, 100, 0, 148, 0, 198, 403, 48, 0, 82, 250, 56, 18, 138, 0, 752, 0, 644, 436, 72, 705, 950, 0, 80, 369, 1178, 0, 1468, 0, 1322, 448, 96, 0, 1930, 1029, 1104, 766, 146, 0, 2488, 1680, 478, 3058, 120, 0, 2674, 0
Offset: 1

Views

Author

Gary Detlefs and Robert G. Wilson v, Feb 20 2013

Keywords

Comments

Conjecture: a(n) = 0 iff n is an odd prime.
a(n) < 0 if n = 1, 2, 4, 12, 924, 1287, 2002, 2145, 3366, 3640, ... .
a(n) is odd if n = 1, 21, 35, 39, 49, 63, 69, 85, 91, 119, 123, ... .

Examples

			a(8)=20 since C(16,8) - C(14,7) (mod 64) = (12870 - 3432) (mod 64) = 9438 (mod 64) = 30 and 30 -8 -2 = 20.
		

Crossrefs

Programs

  • Magma
    [(Binomial(2*n,n)-Binomial(2*n-2,n-1)) mod n^2-n-2: n in [1..70]]; // Bruno Berselli, Feb 21 2013
  • Mathematica
    f[n_] := Mod[Binomial[2 n, n] - Binomial[2 n - 2, n - 1], n^2] - n - 2; Array[f, 61]

Formula

a(n) = A051924(n) (mod n^2) -n -2.

A345013 Triangle read by rows, related to clusters of type D.

Original entry on oeis.org

1, 4, 3, 15, 20, 6, 56, 105, 60, 10, 210, 504, 420, 140, 15, 792, 2310, 2520, 1260, 280, 21, 3003, 10296, 13860, 9240, 3150, 504, 28, 11440, 45045, 72072, 60060, 27720, 6930, 840, 36
Offset: 1

Views

Author

F. Chapoton, Sep 30 2021

Keywords

Comments

Let C_{n+1} be the cyclic quiver with n+1 vertices. Empirically, the n-th row is related to the green-mutation partial order on clusters for this quiver, restricted to clusters that do not meet the initial seed.
Apparently, value of the associated polynomials at -2 is A089849, up to sign.
By evaluating the associated polynomials at x-1, one apparently gets A062196.
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*(x+n+2) / (n! * (n+2)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 31 2022
Chapoton's observation above is correct: the precise expansion is (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*(x+n+2) / (n! * (n+2)!) = Sum_{k = 0..n} (-1)^k*T(n+1,k)*binomial(x+2*n+2-k, 2*n+2-k), as can be verified using the WZ algorithm. For example, n = 2 gives (x+1)^2*(x+2)^2*(x+3)*(x+4)/(2!*4!) = 15*binomial(x+6,6) - 20*binomial(x+5,5) + 6*binomial(x+4,4). - Peter Bala, Jun 24 2023

Examples

			Triangle begins:
[1] 1
[2] 4,    3
[3] 15,   20,    6
[4] 56,   105,   60,    10
[5] 210,  504,   420,   140,  15
[6] 792,  2310,  2520,  1260, 280,  21
[7] 3003, 10296, 13860, 9240, 3150, 504, 28
...
		

Crossrefs

Cf. A001791 (T(n,1)), A000217 (T(n,n)), A026002 (row sums), A000012 (alternating row sum), A051924 (number of clusters of type D_n).

Programs

  • PARI
    row(n) = vector(n, k, k--; (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n); \\ Michel Marcus, Sep 30 2021
  • Sage
    def T_row(n):
        return [(n-k)*binomial(n,k)*binomial(2*n-k,n-1)//n for k in range(n)]
    for n in range(1, 8): print(T_row(n))
    

Formula

T(n, k) = (n-k)*binomial(n,k)*binomial(2*n-k, n-1)/n, for n >= 1 and 0 <= k < n.
From Peter Bala, Jun 24 2023: (Start)
As conjectured above by Chapoton we have
Sum_{k = 0..n-1} T(n,k)*(x - 1)^k = Sum_{k = 0..n-1} A062196(n-1,k)*x^k and
Sum_{k = 0..n-1} T(n,k)*(-2)^k = (-1)^floor(n/2)*A089849(n) for n >= 1 (both easily verified using the WZ algorithm). (End)

A241188 Triangle T(n,s) of Dynkin type D_n read by rows (n >= 2, 0 <= s <= n).

Original entry on oeis.org

1, 2, 1, 1, 3, 5, 5, 1, 4, 9, 16, 20, 1, 5, 14, 30, 55, 77, 1, 6, 20, 50, 105, 196, 294, 1, 7, 27, 77, 182, 378, 714, 1122, 1, 8, 35, 112, 294, 672, 1386, 2640, 4290, 1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445
Offset: 2

Views

Author

N. J. A. Sloane, Apr 24 2014

Keywords

Examples

			Triangle begins:
1, 2, 1,
1, 3, 5, 5,
1, 4, 9, 16, 20,
1, 5, 14, 30, 55, 77,
1, 6, 20, 50, 105, 196, 294,
1, 7, 27, 77, 182, 378, 714, 1122,
1, 8, 35, 112, 294, 672, 1386, 2640, 4290,
1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445,
...
		

Crossrefs

See A009766 for the case of type A.
See A059481 for the case of type B/C.
Diagonals give A029869, A051960, A029651, A051924. Row sums are also A051924.

Programs

  • Mathematica
    f[t_, s_] := Binomial[t, s] (s + t)/t;
    T[, 0] = 1; T[n, n_] := f[2 n - 2, n - 2]; T[n_, s_] := f[n + s - 2, s];
    Table[T[n, s], {n, 2, 9}, {s, 0, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)

Formula

T(n,s) = [n+s-2,s] for 0 <= s < n, T(n,n) = [2n-2,n-2], where [t,s] stands for binomial(t,s)*(s+t)/t.

A337500 a(n) is the number of ballot sequences of length n tied or won by at most 3 votes.

Original entry on oeis.org

1, 2, 4, 8, 14, 30, 50, 112, 182, 420, 672, 1584, 2508, 6006, 9438, 22880, 35750, 87516, 136136, 335920, 520676, 1293292, 1998724, 4992288, 7696444, 19315400, 29716000, 74884320, 115000920, 290845350, 445962870
Offset: 0

Views

Author

Nachum Dershowitz, Aug 30 2020

Keywords

Comments

Also the number of n-step walks on a path graph ending within 3 steps of the origin.
Also the number of monotonic paths of length n ending within 3 steps of the diagonal.

Crossrefs

Bisections give A162551 (odd part, starting from second element), A051924 (even part).

Formula

a(n) = A337499(n) + (n mod 2)*A024483(floor((n+3)/2)).
Conjecture: D-finite with recurrence -(n+3)*(n-4)*a(n) +2*(n^2-2*n-11)*a(n-1) +4*(n-1)^2*a(n-2) -8*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 27 2020

A352184 Coxeter-Catalan numbers for the Coxeter groups A_0, A_1, A_2, A_3 = D_3, D_4, D_5, E_6, E_7, E_8.

Original entry on oeis.org

1, 2, 5, 14, 50, 182, 833, 4160, 25080
Offset: 0

Views

Author

N. J. A. Sloane, Mar 09 2022

Keywords

Crossrefs

A378377 Triangle read by rows: T(n,k) is the number of non-descending sequences with length k such that the maximum of the length and the last number is n.

Original entry on oeis.org

1, 1, 3, 1, 3, 10, 1, 4, 10, 35, 1, 5, 15, 35, 126, 1, 6, 21, 56, 126, 462, 1, 7, 28, 84, 210, 462, 1716, 1, 8, 36, 120, 330, 792, 1716, 6435, 1, 9, 45, 165, 495, 1287, 3003, 6435, 24310, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 92378
Offset: 1

Views

Author

Zlatko Damijanic, Nov 24 2024

Keywords

Comments

Also the T(n,k) is the number of integer partitions (of any positive integer) with length k such that the maximum of the length and the largest part is n.
When k < n, then the last number is n.

Examples

			Triangle begins:
  1
  1 3
  1 3 10
  1 4 10 35
  1 5 15 35 126
  1 6 21 56 126 462
  1 7 28 84 210 462 1716
  ...
For T(3,1) solution is |{(3)}| = 1.
For T(3,2) solution is |{(1,3), (2,3), (3,3)}| = 3.
For T(3,3) solution is |{(1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,3), (3,3,3)}| = 10.
		

Crossrefs

Cf. A051924 (row sums), A001700 (right diagonal).

Programs

  • Mathematica
    T[n_, k_] := Which[
      k == 1, 1,
      k == n, Binomial[2n-1, n],
      k == n-1, T[n-1, n-1],
      1 < k < n-1, T[n-1, k] + T[n, k-1]
    ];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
  • PARI
    T(n,k)={if(kAndrew Howroyd, Nov 24 2024

Formula

T(n,n) = binomial(2*n-1,n).
T(n,k) = binomial(k+n-2, n-1) for k < n.
Previous Showing 31-39 of 39 results.