cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A126970 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 0, 1, 1, 3, 1, 3, 11, 6, 1, 11, 42, 30, 9, 1, 42, 167, 141, 58, 12, 1, 167, 684, 648, 327, 95, 15, 1, 684, 2867, 2955, 1724, 627, 141, 18, 1, 2867, 12240, 13456, 8754, 3746, 1068, 196, 21, 1, 12240, 53043, 61362, 43464, 21060, 7146, 1677, 260, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
    1;
    0,   1;
    1,   3,   1;
    3,  11,   6,   1;
   11,  42,  30,   9,  1;
   42, 167, 141,  58, 12,  1;
  167, 684, 648, 327, 95, 15, 1; ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  0, 1
  1, 3, 1
  0, 1, 3, 1
  0, 0, 1, 3, 1
  0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,  T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 0, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A126952(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A117641(m+n).
Sum_{k=0..n} T(n,k)*(4*k+1) = 5^n. - Philippe Deléham, Mar 22 2007

A124574 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (3,4,4,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 3, 1, 10, 7, 1, 37, 39, 11, 1, 150, 204, 84, 15, 1, 654, 1050, 555, 145, 19, 1, 3012, 5409, 3415, 1154, 222, 23, 1, 14445, 28063, 20223, 8253, 2065, 315, 27, 1, 71398, 146920, 117208, 55300, 16828, 3352, 424, 31, 1, 361114, 776286, 671052, 355236, 125964, 30660, 5079, 549, 35, 1
Offset: 1

Views

Author

Keywords

Comments

Column 1 yields A064613. Row sums yield A081671.
Triangle T(n,k), 0 <= k <= n, defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1). - Philippe Deléham, Feb 27 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
6^n = ((n+1)-th row terms) dot (first n+1 odd integers). Example: 6^4 = 1296 = (150, 204, 84, 15, 1) dot (1, 3, 5, 7, 9) = (150 + 612 + 420 + 105 + 9)= 1296. - Gary W. Adamson, Jun 15 2011
From Peter Bala, Sep 06 2022: (Start)
The following assume the row and column indexing start at 0.
Riordan array (f(x), x*g(x)), where f(x) = (1 - sqrt((1 - 6*x)/(1 - 2*x)))/(2*x) is the o.g.f. of A064613 and g(x) = (1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2) is the o.g.f. of A005572.
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x)*(1 + 4*x + x^2)^n expanded about the point x = 0.
T(n,k) = a(n,k) - a(n,k+1), where a(n,k) = Sum_{j = 0..n} binomial(n,j)* binomial(j,n-k-j)*4^(2*j+k-n). (End)

Examples

			Row 4 is (37,39,11,1) because M[4]= [3,1,0,0;1,4,1,0;0,1,4,1;0,0,1,4] and M[4]^3=[37,39,11,1; 39, 87, 51, 12; 11, 51, 88, 50; 1, 12, 50, 76].
Triangle starts:
    1;
    3,    1
   10,    7,   1;
   37,   39,  11,   1
  150,  204,  84,  15,  1;
  654, 1050, 555, 145, 19, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  3, 1
  1, 4, 1
  0, 1, 4, 1
  0, 0, 1, 4, 1
  0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 0, 0, 1, 4, 1 (End)
		

Crossrefs

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 3 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 3,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,2)+GegenbauerC(n-k-1,-n+1,2 )): seq(print(seq(T(n,k),k=1..n)), n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    M[n_] := SparseArray[{{1, 1} -> 3, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} (-1)^(n-k)*T(n,k) = (-2)^n. - Philippe Deléham, Feb 27 2007
Sum_{k=0..n} T(n,k)*(2*k+1) = 6^n. - Philippe Deléham, Mar 27 2007
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,2) + GegenbauerC(n-k-1,-n+1,2)). - Peter Luschny, May 13 2016

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A126331 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 5*T(n-1,k) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 4, 1, 17, 9, 1, 77, 63, 14, 1, 371, 406, 134, 19, 1, 1890, 2535, 1095, 230, 24, 1, 10095, 15660, 8240, 2269, 351, 29, 1, 56040, 96635, 59129, 19936, 4053, 497, 34, 1, 320795, 598344, 412216, 162862, 40698, 6572, 668, 39, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
7^n = (n-th row terms) dot (first n+1 odd integers). Example: 7^3 = 343 = (77, 63, 14, 1) dot (1, 3, 5, 7) = (77 + 189 + 70 + 7) = 243. - Gary W. Adamson, Jun 15 2011

Examples

			Triangle begins:
      1;
      4,     1;
     17,     9,    1;
     77,    63,   14,    1;
    371,   406,  134,   19,   1;
   1890,  2535, 1095,  230,  24,  1;
  10095, 15660, 8240, 2269, 351, 29, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  4, 1
  1, 5, 1
  0, 1, 5, 1
  0, 0, 1, 5, 1
  0, 0, 0, 1, 5, 1,
  0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 0, 0, 1, 5, 1 (End)
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 4, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A098409(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A104455(m+n).
Sum_{k=0..n} T(n,k)*(2*k+1) = 7^n. - Philippe Deléham, Mar 26 2007

A126791 Binomial matrix applied to A111418.

Original entry on oeis.org

1, 4, 1, 17, 7, 1, 75, 39, 10, 1, 339, 202, 70, 13, 1, 1558, 1015, 425, 110, 16, 1, 7247, 5028, 2400, 771, 159, 19, 1, 34016, 24731, 12999, 4872, 1267, 217, 22, 1, 160795, 121208, 68600, 28882, 8890, 1940, 284, 25, 1, 764388, 593019, 355890, 164136
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
From R. J. Mathar, Mar 12 2013: (Start)
The matrix inverse starts
1;
-4, 1;
11, -7, 1;
-29, 31, -10, 1;
76, -115, 60, -13, 1;
-199, 390, -285, 98, -16, 1;
521, -1254, 1185, -566, 145, -19, 1;
-1364, 3893, -4524, 2785, -985, 201, -22, 1; ... (End)

Examples

			Triangle begins:
      1;
      4,     1;
     17,     7,     1;
     75,    39,    10,    1;
    339,   202,    70,   13,    1;
   1558,  1015,   425,  110,   16,   1;
   7247,  5028,  2400,  771,  159,  19,  1;
  34016, 24731, 12999, 4872, 1267, 217, 22, 1; ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  4, 1
  1, 3, 1
  0, 1, 3, 1
  0, 0, 1, 3, 1
  0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
		

Programs

  • Maple
    A126791 := proc(n,k)
        if n=0 and k = 0 then
            1 ;
        elif k <0 or k>n then
            0;
        elif k= 0 then
            4*procname(n-1,0)+procname(n-1,1) ;
        else
            procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n,k),k=1..n),n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 4, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A026378(m+n+1).
Sum_{k=0..n} T(n,k) = 5^n = A000351(n).
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + x )*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A126953 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 3, 1, 10, 3, 1, 33, 11, 3, 1, 110, 36, 12, 3, 1, 366, 122, 39, 13, 3, 1, 1220, 405, 135, 42, 14, 3, 1, 4065, 1355, 447, 149, 45, 15, 3, 1, 13550, 4512, 1504, 492, 164, 48, 16, 3, 1, 45162, 15054, 5004, 1668, 540, 180, 51, 17, 3, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array (2/(1-6x+sqrt(1-4*x^2)),x*c(x^2)) where c(x)= g.f. of the Catalan numbers A000108. - Philippe Deléham, Jun 01 2013

Examples

			Triangle begins:
     1;
     3,    1;
    10,    3,   1;
    33,   11,   3,   1;
   110,   36,  12,   3,  1;
   366,  122,  39,  13,  3,  1;
  1220,  405, 135,  42, 14,  3, 1;
  4065, 1355, 447, 149, 45, 15, 3, 1;
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 3, 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A127359(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A126931(m+n).
Sum_{k=0..n} T(n,k)*(-2*k+1) = 2^n. - Philippe Deléham, Mar 25 2007

A005573 Number of walks on cubic lattice (starting from origin and not going below xy plane).

Original entry on oeis.org

1, 5, 26, 139, 758, 4194, 23460, 132339, 751526, 4290838, 24607628, 141648830, 817952188, 4736107172, 27487711752, 159864676803, 931448227590, 5435879858958, 31769632683132, 185918669183370, 1089302293140564
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A026378, second binomial transform of A001700. - Philippe Deléham, Jan 28 2007
The Hankel transform of [1,1,5,26,139,758,...] is [1,4,15,56,209,...](see A001353). - Philippe Deléham, Apr 13 2007

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt((1-2*x)/(1-6*x)) -1)/(2*x) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    CoefficientList[Series[(Sqrt[(1-2x)/(1-6x)]-1)/(2x),{x,0,20}],x] (* Harvey P. Dale, Jun 24 2011 *)
    a[n_] := 6^n Hypergeometric2F1[1/2, -n, 2, 2/3]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)) \\ G. C. Greubel, May 02 2019
    
  • Sage
    ((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

From Emeric Deutsch, Jan 09 2003; corrected by Roland Bacher: (Start)
a(n) = Sum_{i=0..n} (-1)^i*6^(n-i)*binomial(n, i)*binomial(2*i, i)/(i+1);
g.f. A(x) satisfies: x(1-6x)A^2 + (1-6x)A - 1 = 0. (End)
From Henry Bottomley, Aug 23 2001: (Start)
a(n) = 6*a(n-1) - A005572(n-1).
a(n) = Sum_{j=0..n} 4^(n-j)*binomial(n, floor(n/2))*binomial(n, j). (End)
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k+1, k)*2^(n-k).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Catalan(k)*6^(n-k).
D-finite with recurrence (n+1)*a(n) = (8*n+2)*a(n-1)-(12*n-12)*a(n-2). - Vladeta Jovovic, Jul 16 2004
a(n) = Sum_{k=0..n} A052179(n,k). - Philippe Deléham, Jan 28 2007
Conjecture: a(n)= 6^n * hypergeom([1/2,-n],[2], 2/3). - Benjamin Phillabaum, Feb 20 2011
From Paul Barry, Apr 21 2009: (Start)
G.f.: (sqrt((1-2*x)/(1-6*x)) - 1)/(2*x).
G.f.: 1/(1-5*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-... (continued fraction). (End)
G.f.: 1/(1 - 4*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Jul 02 2010
a(n) ~ 6^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 05 2012
G.f.: G(0)/(2*x) - 1/(2*x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-2*x) - 2*x*(1-2*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-2*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
a(n) = 2^n*hypergeom([-n, 3/2], [2], -2). - Peter Luschny, Apr 26 2016
E.g.f.: exp(4*x)*(BesselI(0,2*x) + BesselI(1,2*x)). - Ilya Gutkovskiy, Sep 20 2017

Extensions

More terms from Henry Bottomley, Aug 23 2001

A159764 Riordan array (1/(1+4x+x^2), x/(1+4x+x^2)).

Original entry on oeis.org

1, -4, 1, 15, -8, 1, -56, 46, -12, 1, 209, -232, 93, -16, 1, -780, 1091, -592, 156, -20, 1, 2911, -4912, 3366, -1200, 235, -24, 1, -10864, 21468, -17784, 8010, -2120, 330, -28, 1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, -151316, 386373
Offset: 0

Views

Author

Paul Barry, Apr 21 2009

Keywords

Comments

Row sums are (-1)^n*F(2n+2). Diagonal sums are (-1)^n*4^n. Inverse is A052179.
The positive matrix is (1/(1-4x+x^2), x/(1-4x+x^2)) with general term T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,2),0).
For another version, see A124029.
Triangle of coefficients of Chebyshev's S(n,x-4) polynomials (exponents of x in increasing order). - Philippe Deléham, Feb 22 2012
Subtriangle of triangle given by (0, -4, 1/4, -1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 22 2012

Examples

			Triangle begins
     1;
    -4,     1;
    15,    -8,     1;
   -56,    46,   -12,     1;
   209,  -232,    93,   -16,     1;
  -780,  1091,  -592,   156,   -20,     1;
  2911, -4912,  3366, -1200,   235,   -24,     1;
Triangle (0, -4, 1/4, -1/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1;
  0,    1;
  0,   -4,    1;
  0,   15,   -8,    1;
  0,  -56,   46,  -12,    1;
  0,  209, -232,   93,  -16,    1;
		

Crossrefs

Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials : A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 + 4*x + x^2 - y*x), {x, 0, 10}, {y, 0, 10}], x], y]//Flatten (* G. C. Greubel, May 21 2018 *)
  • Sage
    @CachedFunction
    def A159764(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A159764(n-1,k-1)-A159764(n-2,k)-4*A159764(n-1,k)
    for n in (0..9): [A159764(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

Number triangle T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,-2),0).
G.f.: 1/(1+4*x+x^2-y*x). - Philippe Deléham, Feb 22 2012
T(n,k) = (-4)*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 22 2012

A033543 Expansion of (1 - sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)).

Original entry on oeis.org

1, 2, 5, 16, 62, 270, 1257, 6096, 30398, 154756, 800834, 4199720, 22269976, 119207942, 643277553, 3495713184, 19113486390, 105074982876, 580435709622, 3220217022144, 17935186513044, 100243540330188, 562080274898250, 3160904659483104, 17823384503589996, 100749266778698280
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A033321. - Philippe Deléham, Nov 26 2009
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 2 colors and those at a higher level come in 4 colors. Example: a(3)=16 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 2^3 = 8 paths of shape HHH, 2 paths of shape HUD, 2 paths of shape UDH, and 4 paths of shape UHD. - Emeric Deutsch, May 02 2011

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)) )); // G. C. Greubel, Oct 12 2019
    
  • Maple
    seq(coeff(series((1-sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)), x, n+2), x, n), n = 0..40); # G. C. Greubel, Oct 12 2019
  • Mathematica
    CoefficientList[Series[(1-Sqrt[(1-2x)(1-6x)])/(2x(2-3x)),{x,0,40}],x] (* Harvey P. Dale, Aug 12 2012 *)
  • PARI
    x='x+O('x^66); Vec( (1-sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    def A033543_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)) ).list()
    A033543_list(40) # G. C. Greubel, Oct 12 2019

Formula

a(n) = A124575(n,0). - Philippe Deléham, Nov 26 2009
a(n) = Sum_{k=0..n} A052179(n,k)*(-2)^k. - Philippe Deléham, Nov 28 2009
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^n, M = an infinite square production matrix as follows (with the main diagonal (2,3,3,3,...)):
2, 1, 0, 0, ...
1, 3, 1, 0, ...
1, 1, 3, 1, ...
1, 1, 1, 3, ...
... (End)
D-finite with recurrence: 2*(n+1)*a(n) = (19*n-5)*a(n-1) - 12*(4*n-5)*a(n-2) + 36*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 6^(n+1/2)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012

A052177 Number of walks on simple cubic lattice (starting on the xy plane, never going below it and finishing a height 1 above it).

Original entry on oeis.org

0, 1, 8, 50, 288, 1605, 8824, 48286, 264128, 1447338, 7953040, 43842788, 242507456, 1345868589, 7493458392, 41850173670, 234408444288, 1316541032958, 7413214297968, 41842633282620, 236703844320960
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2000

Keywords

Programs

  • Mathematica
    Flatten[{0,RecurrenceTable[{(n-1)*(n+3)*a[n] == 4*n*(2*n+1)*a[n-1] - 12*(n-1)*n*a[n-2],a[1]==1,a[2]==8},a,{n,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)

Formula

a(n) = 4*a(n-1)+A005572(n-1)+A052178(n-1) = A052179(n, 1) = Sum_{j=0..ceiling((n-1)/2)} 4^(n-2j-1)*binomial(n, 2j+1)*binomial(2j+2, j+1)/(j+2).
Recurrence: (n-1)*(n+3)*a(n) = 4*n*(2*n+1)*a(n-1) - 12*(n-1)*n*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 6^(n+3/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: (1 - 4*x - sqrt(1-8*x+12*x^2))^2/(4*x^3). - Mark van Hoeij, May 16 2013

Extensions

More terms and formula from Henry Bottomley, Aug 23 2001

A128937 Triangle formed by reading A039598 mod 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 27 2007, May 02 2007

Keywords

Comments

Also triangle formed by reading triangles A052179, A053121, A124575, A126075, A126093.
Also triangle formed by reading A065600 mod 2. - Philippe Deléham, Oct 15 2007

Examples

			Triangle begins:
  1;
  0, 1;
  1, 0, 1;
  0, 0, 0, 1;
  0, 0, 1, 0, 1;
  0, 1, 0, 0, 0, 1;
  1, 0, 1, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 1, 0, 0, 0, 1;
  0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1;
  0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1;
  0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
		

Crossrefs

Cf. A048896 (row sums).

Programs

Formula

Sum_{k=0..n} T(n,k) = A048896(n).
Sum_{k=0..n} T(n,k)*2^(n-k) = A101692(n). - Philippe Deléham, Oct 09 2007
Sum_{k=0..n} T(n,k)*2^k = A062878(n+1)/3. - Philippe Deléham, Aug 31 2009
Previous Showing 21-30 of 33 results. Next