cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A082830 Decimal expansion of Kempner series Sum_{k>=1, k has no digit 1 in base 10} 1/k.

Original entry on oeis.org

1, 6, 1, 7, 6, 9, 6, 9, 5, 2, 8, 1, 2, 3, 4, 4, 4, 2, 6, 6, 5, 7, 9, 6, 0, 3, 8, 8, 0, 3, 6, 4, 0, 0, 9, 3, 0, 5, 5, 6, 7, 2, 1, 9, 7, 9, 0, 7, 6, 3, 1, 3, 3, 8, 6, 4, 5, 1, 6, 9, 0, 6, 4, 9, 0, 8, 3, 6, 3, 6, 2, 9, 8, 8, 9, 9, 9, 9, 9, 6, 4, 5, 6, 3, 8, 8, 8, 6, 2, 1, 4, 6, 2, 6, 6, 8, 5, 0, 2, 8, 6, 2, 9, 7, 7
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Such sums are called Kempner series, see A082839 (the analog for digit 0) for more information. - M. F. Hasler, Jan 13 2020

Examples

			16.17696952812344426657...
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A024101, A052383 (numbers without '1'), A011531 (numbers with '1').
Cf. A082831, A082832, A082833, A082834, A082835, A082836, A082837, A082838, A082839 (analog for digits 2, ..., 9 and 0).

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive. - Robert G. Wilson v, Jun 01 2009 *)

Formula

Equals Sum_{k in A052383\{0}} 1/k, where A052383 = numbers with no digit 1. Those which have a digit 1 (A011531) are omitted in the harmonic sum, and they have asymptotic density 1: almost all terms are omitted from the sum. - M. F. Hasler, Jan 15 2020

Extensions

More terms from Robert G. Wilson v, Jun 01 2009

A052406 Numbers without 4 as a digit.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

This is a frequent sequence on Chinese, Japanese and Korean elevator buttons. - Jean-Sebastien Girard (circeus(AT)hotmail.com), Jul 28 2008
Essentially numbers in base 9 (using digits 0, 1, 2, 3, 5, 6, 7, 8, 9 rather than 0-8). - Charles R Greathouse IV, Oct 13 2013

Crossrefs

Cf. A004179, A004723, A011760, A038612 (subset of primes), A082833 (Kempner series).
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).

Programs

  • Haskell
    a052406 = f . subtract 1 where
    f 0 = 0
    f v = 10 * f w + if r > 3 then r + 1 else r where (w, r) = divMod v 9
    -- Reinhard Zumkeller, Oct 07 2014
    
  • Magma
    [ n: n in [0..89] | not 4 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local l, m; l, m:= 0, n-1;
          while m>0 do l:= (d->
            `if`(d<4, d, d+1))(irem(m, 9, 'm')), l
          od; parse(cat(l))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 01 2016
  • Mathematica
    Select[Range[100], DigitCount[#, 10, 4] == 0 &] (* Alonso del Arte, Oct 13 2013 *)
  • PARI
    g(n)= local(x,v,j,flag); for(x=1,n, v=Vec(Str(x)); flag=1; for(j=1,length(v), if(v[j]=="4",flag=0)); if(flag,print1(x",") ) ) \\ Cino Hilliard, Apr 01 2007
    
  • PARI
    apply( {A052406(n)=fromdigits(apply(d->d+(d>3),digits(n-1,9)))}, [1..99]) \\ a(n)
    select( {is_A052406(n)=!setsearch(Set(digits(n)),4)}, [0..99]) \\ Used in A038612
    next_A052406(n, d=digits(n+=1))={for(i=1, #d, d[i]!=4|| return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n. Used for A038612. - M. F. Hasler, Jan 11 2020
    
  • Python
    def A052406(n): n-=1; return sum((d+(d>3))*10**i for d,i in ((n//9**i%9,i) for i in range(math.ceil(math.log(n+1,9))))) # M. F. Hasler, Jan 13 2020
    
  • Python
    from gmpy2 import digits
    def A052406(n): return int(digits(n-1,9).translate(str.maketrans('45678','56789'))) # Chai Wah Wu, Jun 28 2025
  • sh
    seq 0 1000 | grep -v 4; # Joerg Arndt, May 29 2011
    

Formula

a(n) = replace digits d > 3 by d + 1 in base-9 representation of n - 1. - Reinhard Zumkeller, Oct 07 2014
Sum_{k>1} 1/a(k) = A082833 = 21.327465... (Kempner series). - Bernard Schott, Jan 12 2020, edited by M. F. Hasler, Jan 13 2020

Extensions

Offset changed by Reinhard Zumkeller, Oct 07 2014

A052404 Numbers without 2 as a digit.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

References

  • M. J. Halm, Word Weirdness, Mpossibilities 66 (Feb. 1998), p. 5.

Crossrefs

Cf. A004177, A004721, A072809, A082831 (Kempner series).
Cf. A052382 (without 0), A052383 (without 1), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
See A038604 for the subset of primes. - M. F. Hasler, Jan 11 2020

Programs

  • Haskell
    a052404 = f . subtract 1 where
       f 0 = 0
       f v = 10 * f w + if r > 1 then r + 1 else r  where (w, r) = divMod v 9
    -- Reinhard Zumkeller, Oct 07 2014
    
  • Magma
    [ n: n in [0..89] | not 2 in Intseq(n) ];  // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local l, m; l, m:= 0, n-1;
          while m>0 do l:= (d->
            `if`(d<2, d, d+1))(irem(m, 9, 'm')), l
          od; parse(cat(l))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 01 2016
  • Mathematica
    ban2Q[n_]:=FreeQ[IntegerDigits[n],2]==True; Select[Range[0,89],ban2Q[#] &] (* Jayanta Basu, May 17 2013 *)
    Select[Range[0,100],DigitCount[#,10,2]==0&] (* Harvey P. Dale, Apr 13 2015 *)
  • PARI
    lista(nn, d=2) = {for (n=0, nn, if (!vecsearch(vecsort(digits(n),,8),d), print1(n, ", ")););} \\ Michel Marcus, Feb 21 2015
    
  • PARI
    apply( {A052404(n)=fromdigits(apply(d->d+(d>1),digits(n-1,9)))}, [1..99])
    next_A052404(n, d=digits(n+=1))={for(i=1, #d, d[i]==2&&return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n: if there's a digit 2 in n+1, replace the first occurrence by 3 and all following digits by 0.
    (A052404_vec(N)=vector(N, i, N=if(i>1, next_A052404(N))))(99) \\ first N terms
    select( {is_A052404(n)=!setsearch(Set(digits(n)),2)}, [0..99])
    (A052404_upto(N)=select( is_A052404, [0..N]))(99) \\ M. F. Hasler, Jan 11 2020
    
  • Python
    from gmpy2 import digits
    def A052404(n): return int(''.join(str(int(d)+1) if d>'1' else d for d in digits(n-1,9))) # Chai Wah Wu, Aug 30 2024
  • sh
    seq 0 1000 | grep -v 2; # Joerg Arndt, May 29 2011
    

Formula

If the offset were changed to 0: a(0) = 0, a(n+1) = f(a(n)+1,a(n)+1) where f(x,y) = if x<10 and x<>2 then y else if x mod 10 = 2 then f(y+1,y+1) else f(floor(x/10),y). - Reinhard Zumkeller, Mar 02 2008
a(n) = replace digits d > 1 by d + 1 in base-9 representation of n - 1. - Reinhard Zumkeller, Oct 07 2014
Sum_{k>1} 1/a(k) = A082831 = 19.257356... (Kempner series). - Bernard Schott, Jan 12 2020, edited by M. F. Hasler, Jan 14 2020

Extensions

Offset changed by Reinhard Zumkeller, Oct 07 2014

A052421 Numbers without 8 as a digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Crossrefs

Cf. A004183, A004727, A038616 (subset of primes), A082837 (Kempner series).
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A007095 (without 9).

Programs

  • Haskell
    a052421 = f . subtract 1 where
    f 0 = 0
    f v = 10 * f w + if r > 7 then r + 1 else r where (w, r) = divMod v 9
    -- Reinhard Zumkeller, Oct 07 2014
    
  • Magma
    [ n: n in [0..89] | not 8 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local l, m; l, m:= 0, n-1;
          while m>0 do l:= (d->
            `if`(d<8, d, d+1))(irem(m, 9, 'm')), l
          od; parse(cat(l))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 01 2016
  • Mathematica
    Select[Range[0,100],DigitCount[#,10,8]==0&] (* Harvey P. Dale, Oct 11 2012 *)
  • PARI
    lista(nn)=for (n=0, nn, if (!vecsearch(vecsort(digits(n),,8), 8), print1(n, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    /* See OEIS wiki page (cf. LINKS) for more programs. */
    apply( {A052421(n)=fromdigits(apply(d->d+(d>7),digits(n-1,9)))}, [1..99]) \\ a(n)
    select( {is_A052421(n)=!setsearch(Set(digits(n)),8)}, [0..99]) \\ used in A038616
    next_A052421(n, d=digits(n+=1))={for(i=1,#d, d[i]==8&&return((1+n\d=10^(#d-i))*d)); n} \\ Least a(k) > n. Used in A038616. - M. F. Hasler, Jan 11 2020
    
  • Python
    from gmpy2 import digits
    def A052421(n): return int(digits(n-1,9).replace('8','9')) # Chai Wah Wu, Jun 28 2025
  • sh
    seq 0 1000 | grep -v 8; # Joerg Arndt, May 29 2011
    

Formula

a(n) = replace digits d > 7 by d + 1 in base-9 representation of n - 1. - Reinhard Zumkeller, Oct 07 2014
Sum_{n>1} 1/a(n) = A082837 = 22.726365... (Kempner series). - Bernard Schott, Jan 12 2020, edited by M. F. Hasler, Jan 13 2020

Extensions

Offset changed by Reinhard Zumkeller, Oct 07 2014

A178333 Characteristic function of mountain numbers.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, May 25 2010

Keywords

Comments

a(A134941(n)) = 1; a(A134951(n)) = 1;
a(n) = 0 for n > 12345678987654321;
a(A011540(n))=0; a(A052383(n))=0; a(A171901(n))=0;
A178334(n) = SUM(a(k): 0<=k<=n).

Crossrefs

Programs

  • Haskell
    a178333 n = fromEnum $
       n `mod` 10 == 1 && a000030 n == 1 && a196368 n == 1 && and down where
          down = dropWhile (== False) $ zipWith (<) (tail $ show n) (show n)
    a178333_list = map a178333 [0..]
    -- Reinhard Zumkeller, Oct 28 2001
  • Mathematica
    a[n_] := Boole[ MatchQ[ IntegerDigits[n], {1, a___, b_, c___, 1} /; OrderedQ[{1, a, b}, Less] && OrderedQ[ {b, c, 1}, Greater]]]; a[1]=1; Table[a[n], {n, 0, 200}] (* Jean-François Alcover, Jun 13 2012 *)

Formula

a(n) = if n mod 10 = 1 then if n = 1 then 1 else g(n div 10, 1) else 0
with g(x, y) = if x mod 10 > y then g(x div 10, x mod 10) else if x mod 10 = y then 0 else h(x div 10, x mod 10)
and h(x, y) = if y = 1 then 0^x else if x mod 10 < y then h(x div 10, x mod 10) else 0.

A255398 Numbers k such that k^2 lacks the digit 1 in its decimal expansion.

Original entry on oeis.org

0, 2, 3, 5, 6, 7, 8, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 30, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 64, 65, 66, 67, 68, 70, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 92, 93, 94, 95, 97, 98, 143, 144, 150, 153, 155, 156, 157, 158
Offset: 1

Views

Author

Vincenzo Librandi, Feb 22 2015

Keywords

Examples

			98 is in this sequence because 98^2 = 9604.
99 is not in this sequence because 99^2 = 9801.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | not 1 in Intseq(n^2)];
    
  • Maple
    filter:= n -> not member(1, convert(n^2,base,10)):
    select(filter, [$0..200]); # Robert Israel, Apr 27 2023
  • Mathematica
    Select[Range[0, 200], DigitCount[#^2, 10, 1]==0 &]
  • PARI
    isok(k) = !vecsearch(Set(digits(k^2)), 1); \\ Michel Marcus, Apr 29 2023
  • Python
    def ok(k): return "1" not in str(k**2)
    print([k for k in range(160) if ok(k)]) # Michael S. Branicky, Apr 27 2023
    

Formula

From Mohammed Yaseen, Apr 18 2023: (Start)
The smallest n-digit term ~ sqrt(2) * 10^(n-1).
The largest n-digit term = 10^n - 2 (see A099150). (End)

A299690 Numbers without digit 1 whose multiplicative digital root is not 0.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 22, 23, 24, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 46, 47, 48, 49, 53, 57, 62, 63, 64, 66, 67, 68, 72, 73, 74, 75, 76, 77, 79, 82, 83, 84, 86, 88, 89, 92, 93, 94, 97, 98, 99, 222, 223, 224, 226, 227, 228, 229, 232
Offset: 1

Views

Author

J. Lowell, Feb 19 2018

Keywords

Comments

Is this sequence infinite?
There are no members of this sequence with 45 to 2000 decimal digits. Perhaps the last term is a(614640917006263790) = 77333222222222222222222222222222222222222222. - Charles R Greathouse IV, Feb 26 2018
This sequence is finite. Proof: Let k be the smallest term with more than 2000 decimal digits. Then the product of decimal digits pk of k has fewer than 2001 decimal digits (otherwise k isn't the smallest term with more than 2000 decimal digits). This number pk has at least as many decimal digits as 2^2001 has, which are 603. But then it doesn't have a nonzero multiplicative digital root per the computations of Charles R Greathouse IV. QED. - David A. Corneth, Aug 23 2018

Examples

			5 times 4 = 20 and 2 times 0 = 0, so 54 is not in this sequence.
		

Crossrefs

Programs

  • Mathematica
    multDigRoot[n_] := NestWhile[Times @@ IntegerDigits@# &, n, UnsameQ, All]; Select[Range[500], DigitCount[#, 10, 1] == 0 && multDigRoot[#] != 0 &] (* Alonso del Arte, Feb 19 2018, based on Robert G. Wilson v's program for A031347 *)
  • PARI
    mdr(n)=while(n>9,n=factorback(digits(n)));n
    do(n)=my(v=List());forvec(u=vector(n,i,[2,9]), if(mdr(factorback(u)), listput(v, fromdigits(u)))); Vec(v) \\ Gives n-digit elements
    \\ Charles R Greathouse IV, Feb 19 2018

Formula

{ A052383 } intersect { A277061 }.

A132080 Numbers having in decimal representation no common digits with all their proper divisors.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 23, 27, 29, 34, 37, 38, 43, 46, 47, 49, 53, 54, 56, 57, 58, 59, 67, 68, 69, 73, 76, 78, 79, 83, 86, 87, 89, 97, 223, 227, 229, 233, 239, 247, 249, 257, 259, 263, 267, 269, 277, 283, 289, 293, 307, 323, 329, 334, 337, 347, 349, 353, 356, 358, 359
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 09 2007

Keywords

Comments

A038603 is a subsequence.

Examples

			Proper divisors of a(20)=54: {1, 2, 3, 6, 9, 18, 27}
with set of digits {1,2,3,6,7,8,9} containing neither 4 nor 5.
		

Crossrefs

Subsequence of A052383.

Programs

  • Haskell
    import Data.List (intersect)
    a132080 n = a132080_list !! (n-1)
    a132080_list = [x | x <- [2..], all null $
                        map (show x `intersect`) $ map show $ a027751_row x]
    -- Reinhard Zumkeller, Oct 06 2012
    
  • Mathematica
    Select[Range[2,359],ContainsNone[IntegerDigits[#],IntegerDigits/@Drop[Divisors[#],-1]//Flatten]&] (* James C. McMahon, Mar 03 2025 *)
  • PARI
    is(n)=my(D=Set(digits(n))); fordiv(n,d, if(#setintersect(D, Set(digits(d))), return(d==n&&n>1))) \\ Charles R Greathouse IV, Dec 01 2013

A255430 Natural numbers n, not multiples of 10, such that n and n^2 lack the digit 1 in their decimal expansions.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 22, 23, 24, 25, 26, 27, 28, 45, 47, 48, 52, 53, 55, 57, 58, 62, 63, 64, 65, 66, 67, 68, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88, 92, 93, 94, 95, 97, 98, 202, 205, 206, 207, 208, 222, 223, 225, 232, 233, 234, 235, 236, 238, 242, 243, 244, 245, 252, 253, 255
Offset: 1

Views

Author

Zak Seidov, Feb 23 2015

Keywords

Comments

No trailing zeros allowed.

Crossrefs

A382239 Numbers not divisible by any of their digits nor by the sum of their digits. Digit 0 is allowed (and does not divide anything).

Original entry on oeis.org

23, 29, 34, 37, 38, 43, 46, 47, 49, 53, 56, 57, 58, 59, 67, 68, 69, 73, 74, 76, 78, 79, 83, 86, 87, 89, 94, 97, 98, 203, 223, 227, 229, 233, 239, 249, 253, 257, 259, 263, 267, 269, 277, 283, 289, 293, 299, 307, 323, 329, 334, 337, 338, 343, 346, 347, 349, 353, 356, 358, 359, 367, 373, 374, 376
Offset: 1

Views

Author

Robert Israel, Mar 19 2025

Keywords

Comments

From a suggestion by Sergio Pimentel.

Examples

			a(5) = 38 is included because 38 is not divisible by 3, 8 or 3 + 8 = 11.
a(30) = 203 is included because 203 is not divisible by 2, 0, 3 or 2 + 0 + 3 = 5.
		

Crossrefs

Subsequence of A052383.

Programs

  • Maple
    filter:= proc(n) local L;
      L:= subs(0=NULL,convert(n,base,10));
      not ormap(t -> n mod t = 0, [op(L),convert(L,`+`)])
    end proc:
    select(filter, [$1..1000]);
  • Mathematica
    s= {};Do[t=Select[IntegerDigits[n],#>0&];AppendTo[t,Total[t]];If[NoneTrue[t,Mod[n,#]==00&],AppendTo[s,n]],{n,376}];s (* James C. McMahon, Mar 21 2025 *)
  • Python
    def ok(n):
        d = list(map(int, str(n)))
        return (s:=sum(d)) and n%s!=0 and all(n%di!=0 for di in set(d)-{0})
    print([k for k in range(1, 377) if ok(k)]) # Michael S. Branicky, Apr 01 2025

Formula

n^k << a(n) < 2^n for n > 5 where k = log(10)/log(9). - Charles R Greathouse IV, Mar 20 2025
Previous Showing 11-20 of 30 results. Next