cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 124 results. Next

A278028 Let {c(i)} = A007916 denote the sequence of numbers > 1 which are not perfect powers. Every positive integer n has a unique representation as a tower n = c(x_1)^c(x_2)^c(x_3)^...^c(x_k), where the exponents are nested from the right. The sequence is an irregular triangle read by rows, where the n-th row lists x_1, ..., x_k.

Original entry on oeis.org

1, 2, 1, 1, 3, 4, 5, 1, 2, 2, 1, 6, 7, 8, 9, 10, 11, 1, 1, 1, 12, 13, 14, 15, 16, 17, 18, 19, 3, 1, 20, 2, 2, 21, 22, 23, 24, 1, 3, 25, 26, 27, 4, 1, 28, 29, 30, 31
Offset: 1

Views

Author

N. J. A. Sloane, Nov 09 2016

Keywords

Comments

Row lengths are A288636(n). - Gus Wiseman, Jun 12 2017

Examples

			Rows 2 through 32 are:
1,
2,
1, 1,
3,
4,
5,
1, 2,
2, 1,
6,
7,
8,
9,
10,
11,
1, 1, 1,
12,
13,
14,
15,
16,
17,
18,
19,
3, 1,
20,
2, 2,
21,
22,
23,
24,
1, 3,
...
		

Crossrefs

See A277564 for another version.

A367579 Irregular triangle read by rows where row n is the multiset multiplicity kernel (MMK) of the multiset of prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 6, 1, 1, 2, 2, 1, 7, 1, 2, 8, 1, 3, 2, 2, 1, 1, 9, 1, 2, 3, 1, 1, 2, 1, 4, 10, 1, 1, 1, 11, 1, 2, 2, 1, 1, 3, 3, 1, 1, 12, 1, 1, 2, 2, 1, 3, 13, 1, 1, 1, 14, 1, 5, 2, 3, 1, 1, 15, 1, 2, 4, 1, 3, 2, 2, 1, 6, 16, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2023

Keywords

Comments

Row n = 1 is empty.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}.
Note: I chose the word 'kernel' because, as with A007947 and A304038, MMK(m) is constructed using the same underlying elements as m and has length equal to the number of distinct elements of m. However, it is not necessarily a submultiset of m.

Examples

			The first 45 rows:
     1: {}      16: {1}       31: {11}
     2: {1}     17: {7}       32: {1}
     3: {2}     18: {1,2}     33: {2,2}
     4: {1}     19: {8}       34: {1,1}
     5: {3}     20: {1,3}     35: {3,3}
     6: {1,1}   21: {2,2}     36: {1,1}
     7: {4}     22: {1,1}     37: {12}
     8: {1}     23: {9}       38: {1,1}
     9: {2}     24: {1,2}     39: {2,2}
    10: {1,1}   25: {3}       40: {1,3}
    11: {5}     26: {1,1}     41: {13}
    12: {1,2}   27: {2}       42: {1,1,1}
    13: {6}     28: {1,4}     43: {14}
    14: {1,1}   29: {10}      44: {1,5}
    15: {2,2}   30: {1,1,1}   45: {2,3}
		

Crossrefs

Indices of empty and singleton rows are A000961.
Row lengths are A001221.
Depends only on rootless base A052410, see A007916.
Row minima are A055396.
Rows have A071625 distinct elements.
Indices of constant rows are A072774.
Indices of strict rows are A130091.
Rows have Heinz numbers A367580.
Row sums are A367581.
Row maxima are A367583, opposite A367587.
Index of first row with Heinz number n is A367584.
Sorted row indices of first appearances are A367585.
Indices of rows of the form {1,1,...} are A367586.
Agrees with sorted prime signature at A367683, counted by A367682.
A submultiset of prime indices at A367685, counted by A367684.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reversed A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367582 counts partitions by sum of multiset multiplicity kernel.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[mmk[PrimePi/@Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}]

Formula

For all positive integers n and k, row n^k is the same as row n.

A277564 Let {c(i)} = A007916 denote the sequence of numbers > 1 which are not perfect powers. Every positive integer n has a unique representation as a tower n = c(x_1)^c(x_2)^c(x_3)^...^c(x_k), where the exponents are nested from the right. The sequence is an irregular triangle read by rows, where the n-th row lists n followed by x_1, ..., x_k.

Original entry on oeis.org

1, 2, 1, 3, 2, 4, 1, 1, 5, 3, 6, 4, 7, 5, 8, 1, 2, 9, 2, 1, 10, 6, 11, 7, 12, 8, 13, 9, 14, 10, 15, 11, 16, 1, 1, 1, 17, 12, 18, 13, 19, 14, 20, 15, 21, 16, 22, 17, 23, 18, 24, 19, 25, 3, 1, 26, 20, 27, 2, 2, 28, 21, 29, 22, 30, 23, 31, 24, 32, 1, 3, 33, 25, 34, 26, 35, 27, 36, 4, 1, 37, 28, 38, 29, 39, 30, 40, 31
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2016

Keywords

Comments

The row lengths are A288636(n) + 1. - Gus Wiseman, Jun 12 2017
See A278028 for a version in which row n simply lists x_1, x_2, ..., x_k (omitting the initial n).

Examples

			1 is represented by the empty sequence (), by convention.
Successive rows of the triangle are as follows (c(k) denotes the k-th non-prime-power, A007916(k)):
2, 1,
3, 2,
4, 1, 1,
5, 3,
6, 4, because 6 = c(4)
7, 5,
8, 1, 2, because 8 = 2^3 = c(1)^c(2)
9, 2, 1,
10, 6,
11, 7,
...
16, 1, 1, 1, because 16 = 2^4 = c(1)^4 = c(1)^(c(1)^2) = c[1]^(c[1]^c[1])
17, 12,
...
This sequence represents a bijection N -> Q where Q is the set of all finite sequences of positive integers: 1->(), 2->(1), 3->(2), 4->(1 1), 5->(3), 6->(4), 7->(5), 8->(1 2), 9->(2 1), ...
		

Crossrefs

Programs

  • Maple
    See link.
  • Mathematica
    nn=10000;radicalQ[1]:=False;radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All,2]],1];
    hyperfactor[1]:={};hyperfactor[n_?radicalQ]:={n};hyperfactor[n_]:=With[{g=GCD@@FactorInteger[n][[All,2]]},Prepend[hyperfactor[g],Product[Apply[Power[#1,#2/g]&,r],{r,FactorInteger[n]}]]];
    rad[0]:=1;rad[n_?Positive]:=rad[n]=NestWhile[#+1&,rad[n-1]+1,Not[radicalQ[#]]&];Set@@@Array[radPi[rad[#]]==#&,nn];
    Flatten[Join[{#},radPi/@hyperfactor[#]]&/@Range[nn]]

Extensions

Edited by N. J. A. Sloane, Nov 09 2016

A367581 Sum of the multiset multiplicity kernel (in which each multiplicity becomes the least element of that multiplicity) of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 3, 6, 2, 4, 1, 7, 3, 8, 4, 4, 2, 9, 3, 3, 2, 2, 5, 10, 3, 11, 1, 4, 2, 6, 2, 12, 2, 4, 4, 13, 3, 14, 6, 5, 2, 15, 3, 4, 4, 4, 7, 16, 3, 6, 5, 4, 2, 17, 5, 18, 2, 6, 1, 6, 3, 19, 8, 4, 3, 20, 3, 21, 2, 5, 9, 8, 3, 22, 4, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets, MMK is represented by A367579, and as an operation on their Heinz numbers, it is represented by A367580.

Examples

			The multiset multiplicity kernel of {1,2,2,3} is {1,1,2}, so a(90) = 4.
		

Crossrefs

Positions of 1's are A000079 without 1.
Positions of first appearances are A008578.
Depends only on rootless base A052410, see A007916, A052409.
The triangle A367579 has these as row sums, ranks A367580.
The triangle for this rank statistic is A367582.
For maximum instead of sum we have A367583, opposite A367587.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reverse A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[Total[mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[n]]], {n,100}]

Formula

a(n^k) = a(n) for all positive integers n and k.
a(n) = A056239(A367580(n)).
If n is squarefree, a(n) = A055396(n)*A001222(n).

A097054 Nonsquare perfect powers.

Original entry on oeis.org

8, 27, 32, 125, 128, 216, 243, 343, 512, 1000, 1331, 1728, 2048, 2187, 2197, 2744, 3125, 3375, 4913, 5832, 6859, 7776, 8000, 8192, 9261, 10648, 12167, 13824, 16807, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 50653
Offset: 1

Views

Author

Hugo Pfoertner, Jul 21 2004

Keywords

Comments

Terms of A001597 that are not in A000290.
All terms of this sequence are also in A070265 (odd powers), but omitting those odd powers that are also a square (e.g. 64=4^3=8^2).

Crossrefs

Cf. A001597 (perfect powers), A000290 (the squares), A008683, A070265 (odd powers), A097055, A097056, A239870, A239728, A093771.

Programs

  • Haskell
    import Data.Map (singleton, findMin, deleteMin, insert)
    a097054 n = a097054_list !! (n-1)
    a097054_list = f 9 (3, 2) (singleton 4 (2, 2)) where
       f zz (bz, be) m
        | xx < zz && even be =
                    f zz (bz, be+1) (insert (bx*xx) (bx, be+1) $ deleteMin m)
        | xx < zz = xx :
                    f zz (bz, be+1) (insert (bx*xx) (bx, be+1) $ deleteMin m)
        | xx > zz = f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m)
        | otherwise = f (zz + 2 * bz + 1) (bz + 1, 2) m
        where (xx, (bx, be)) = findMin m
    -- Reinhard Zumkeller, Mar 28 2014
    
  • Maple
    # uses code of A001597
    for n from 4 do
        if not issqr(n) and isA001597(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Jan 13 2021
  • Mathematica
    nn = 50653; Select[Union[Flatten[Table[n^i, {i, Prime[Range[2, PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]], ! IntegerQ[Sqrt[#]] &] (* T. D. Noe, Apr 19 2011 *)
  • PARI
    is(n)=ispower(n)%2 \\ Charles R Greathouse IV, Aug 28 2016
    
  • PARI
    list(lim)=my(v=List()); forprime(e=3,logint(lim\=1,2), for(b=2,sqrtnint(lim,e), if(!issquare(b), listput(v,b^e)))); Set(v) \\ Charles R Greathouse IV, Jan 09 2023
    
  • Python
    from sympy import mobius, integer_nthroot
    def A097054(n):
        def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(3,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

A052409(a(n)) is odd. - Reinhard Zumkeller, Mar 28 2014
Sum_{n>=1} 1/a(n) = 1 - zeta(2) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 0.2295303015... - Amiram Eldar, Dec 21 2020

A299090 Number of "digits" in the binary representation of the multiset of prime factors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2018

Keywords

Comments

a(n) is also the binary weight of the largest multiplicity in the multiset of prime factors of n.
Any finite multiset m has a unique binary representation as a finite word bin(m) = s_k..s_1 such that: (1) each "digit" s_i is a finite set, (2) the leading term s_k is nonempty, and (3) m = 1*s_1 + 2*s_2 + 4*s_3 + 8*s_4 + ... + 2^(k-1)*s_k where + is multiset union, 1*S = S as a multiset, and n*S = 1*S + (n-1)*S for n > 1. The word bin(m) can be thought of as a finite 2-adic set. For example,
bin({1,1,1,1,2,2,3,3,3}) = {1}{2,3}{3},
bin({1,1,1,1,1,2,2,2,2}) = {1,2}{}{1},
bin({1,1,1,1,1,2,2,2,3}) = {1}{2}{1,2,3}.
a(n) is the least k such that columns indexed k or greater in A329050 contain no divisors of n. - Peter Munn, Feb 10 2020

Examples

			36 has prime factors {2,2,3,3} with binary representation {2,3}{} so a(36) = 2.
Binary representations of the prime multisets of each positive integer begin: {}, {2}, {3}, {2}{}, {5}, {2,3}, {7}, {2}{2}, {3}{}, {2,5}, {11}, {2}{3}, {13}, {2,7}, {3,5}, {2}{}{}.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,0,IntegerLength[Max@@FactorInteger[n][[All,2]],2]],{n,100}]
  • PARI
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A299090(n) = if(1==n,0,#binary(A051903(n))); \\ Antti Karttunen, Jul 29 2018
    
  • Python
    from sympy import factorint
    def A299090(n): return max(factorint(n).values(),default=0).bit_length() # Chai Wah Wu, Apr 11 2025

Formula

a(n) = A070939(A051903(n)), n>1.
If m is a set then bin(m) has only one "digit" m; so a(n) = 1 if n is squarefree.
If m is of the form n*{x} then bin(m) is obtained by listing the binary digits of n and replacing 0 -> {}, 1 -> {x}; so a(p^n) = binary weight of n.
a(n) = A061395(A225546(n)). - Peter Munn, Feb 10 2020
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=1} (1 - 1/zeta(2^k)) = 1.47221057635756400916... . - Amiram Eldar, Jan 05 2024

Extensions

More terms from Antti Karttunen, Jul 29 2018

A289023 Position in the sequence of numbers that are not perfect powers (A007916) of the smallest positive integer x such that for some positive integer y we have n = x^y (A052410).

Original entry on oeis.org

1, 2, 1, 3, 4, 5, 1, 2, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 3, 20, 2, 21, 22, 23, 24, 1, 25, 26, 27, 4, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 5, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 1, 54, 55, 56, 57, 58, 59, 60
Offset: 2

Views

Author

Gus Wiseman, Jun 22 2017

Keywords

Comments

Every pair p of positive integers is of the form p = (a(n), A052409(n)) for exactly one n.

Examples

			a(27)=2 because the smallest root of 27 is 3, and 3 is the 2nd entry of A007916.
a(25)=3 because the smallest root of 25 is 5, and 5 is the 3rd entry of A007916.
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    q=Table[Power[n,1/GCD@@FactorInteger[n][[All,2]]],{n,2,nn}];
    q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}]
  • PARI
    a(n) = if (ispower(n,,&r), x = r, x = n); sum(k=2, x, ispower(k)==0); \\ Michel Marcus, Jul 19 2017

Formula

For n>1 we have a(n) = A278028(n,1).

A303708 Number of aperiodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 4, 0, 2, 0, 3, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 0, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 0, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 0, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.
The positions of zeros in this sequence are the prime powers A000961.

Examples

			The a(144) = 8 aperiodic factorizations are (2*2*2*3*6), (2*2*2*18), (2*2*3*12), (2*3*24), (2*6*12), (2*72), (3*48) and (6*24). Missing from this list are (12*12), (2*2*6*6) and (2*2*2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]===1&]],{n,100}]

Formula

a(n) = Sum_{d in A007916, d|A052409(n)} mu(d) * A303707(n^(1/d)).

A365805 a(n) = largest exponent m for which a representation of the form A163511(n) = k^m exists (for some k). a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 01 2023

Keywords

Comments

Equivalently, the largest exponent m for which a representation of the form A332214(n) = k^m exists (for some k), or similarly, for any other such variant of A163511, like A332817.

Crossrefs

Cf. A365808 (positions of even terms), A365801 (multiples of 3), A365802 (multiples of 5), A366287 (multiples of 7), A366391 (multiples of 11).

Programs

  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); };
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A365805(n) = A052409(A163511(n));

Formula

a(n) = A052409(A163511(n)).
If a(n) > 1 (or A052409(n) > 1), then a(n) <> A052409(n). [Consider A366370]

A367583 Greatest element in row n of A367579 (multiset multiplicity kernel).

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 2, 6, 1, 2, 1, 7, 2, 8, 3, 2, 1, 9, 2, 3, 1, 2, 4, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 4, 3, 2, 6, 16, 2, 3, 4, 2, 1, 17, 2, 18, 1, 4, 1, 3, 1, 19, 7, 2, 1, 20, 2, 21, 1, 3, 8, 4, 1, 22, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}.

Examples

			For 450 = 2^1 * 3^2 * 5^2, we have MMK({1,2,2,3,3}) = {1,2,2} so a(450) = 2.
		

Crossrefs

Positions of first appearances are A008578.
Depends only on rootless base A052410, see A007916, A052409.
For minimum instead of maximum element we have A055396.
Row maxima of A367579.
Greatest prime index of A367580.
Positions of 1's are A367586 (powers of even squarefree numbers).
The opposite version is A367587.
A007947 gives squarefree kernel.
A072774 lists powers of squarefree numbers.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reverse A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A363486 gives least prime index of greatest exponent.
A363487 gives greatest prime index of greatest exponent.
A364191 gives least prime index of least exponent.
A364192 gives greatest prime index of least exponent.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]},Sort[Table[Min@@Select[q,Count[q,#]==i&],{i,mts}]]];
    Table[If[n==1,0,Max@@mmk[PrimePi/@Join@@ConstantArray@@@If[n==1,{},FactorInteger[n]]]],{n,1,100}]

Formula

a(n) = A061395(A367580(n)).
a(n^k) = a(n) for all positive integers n and k.
If n is a power of a squarefree number, a(n) = A055396(n).
Previous Showing 31-40 of 124 results. Next