cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A223092 Triangle read by rows: let T(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,0), (1,-1) and (0,-1); n-th row of triangle gives T(n,n), T(n,n-1), ..., T(n,0).

Original entry on oeis.org

1, 1, 2, 1, 4, 7, 1, 6, 18, 29, 1, 8, 33, 86, 133, 1, 10, 52, 179, 431, 650, 1, 12, 75, 316, 978, 2238, 3319, 1, 14, 102, 505, 1874, 5406, 11941, 17498, 1, 16, 133, 754, 3235, 11020, 30241, 65086, 94525, 1, 18, 168, 1071, 5193, 20202, 64698, 171045, 360897, 520508, 1, 20, 207, 1464, 7896, 34362, 124455, 380400, 977040, 2029490, 2910895
Offset: 0

Views

Author

N. J. A. Sloane, Mar 29 2013

Keywords

Examples

			Triangle begins:
[1]
[1, 2]
[1, 4, 7]
[1, 6, 18, 29]
[1, 8, 33, 86, 133]
[1, 10, 52, 179, 431, 650]
[1, 12, 75, 316, 978, 2238, 3319]
...
The T(n,k) array begins:
4:  0  0  0  0   1  10 ...
3:  0  0  0  1   8  52 ...
2:  0  0  1  6  33 179 ...
1:  0  1  4 18  86 431 ...
0:  1  2  7 29 133 650 ...
-------------------------
k/n:0  1  2  3   4   5 ...
T(5,2) = T(5,3) + T(4,3) + T(4,2) + T(4,1) = 52 + 8 + 33 + 86 = 179.- _Philippe Deléham_, Mar 29 2013
This is also Dziemianczuk's array N(-i,i+j) read by antidiagonals:
1,2,7,29,133,650,3319,17498, ...
1,4,18,86,431,2238,11941,65086, ...
1,6,33,179,978,5406,30241,171045, ...
1,8,52,316,1874,11020,64698,380400, ...
1,10,75,505,3235,20202,124455,761160, ...
... - _N. J. A. Sloane_, Dec 05 2013
		

Crossrefs

Cf. A064641 (T(n,0)), A071943, A052709.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
          `if`(n<0 or k<0 or k>n, 0, add(T(n-l[1], k-l[2]),
           l=[[1, 1], [1, 0], [1, -1], [0, -1]]) ))
        end:
    seq(seq(T(n, n-j), j=0..n), n=0..10);  # Alois P. Heinz, Apr 08 2013
  • Mathematica
    max = 10; T[0, 0] = 1; T[n_ /; n >= 0, k_ /; 0 <= k <= max] := T[n, k] = T[n, k+1]+T[n-1, k+1]+T[n-1, k]+T[n-1, k-1]; T[n_, k_] = 0; Table[Table[T[n, k], {k, n, 0, -1}], {n, 0, max}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)

Formula

T(n,k) = T(n,k+1) + T(n-1,k+1) + T(n-1,k) + T(n-1,k-1). - Philippe Deléham, Mar 29 2013

A260772 Certain directed lattice paths.

Original entry on oeis.org

1, 3, 10, 41, 190, 946, 4940, 26693, 147990, 837102, 4811860, 28027210, 165057100, 981177060, 5879570200, 35478788269, 215398416870, 1314794380374, 8064119033220, 49673222082782, 307163049317540, 1906066361809148, 11865666767361960, 74081851132379426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Programs

  • Maple
    # A260772 satisfies a 4th-order recurrence that can be reduced
    # to a 2nd-order recurrence given in this program t:
    t := proc(n) options remember;
    if n <= 1 then
        [-1/2, 0, 1, 4][2*n+2]
      else
        (16*(n-2)*(2*n-3)*(5*n-2)*t(n-2) + (440*n^3-1056*n^2+724*n-144)*t(n-1))
           /( n*(2*n+1)*(5*n-7) )
      fi
    end:
    A260772 := proc(n)
    t(n/2) + ( (2-2*n)*t((n-1)/2)+(n+2)*t((n+1)/2) ) / (1+5*n)
    end:
    seq(A260772(i),i=0..100);
    # Mark van Hoeij, Jul 14 2022
  • Maxima
    a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j,n-4*j+1),j,0,(n+1)/4)/n; /* Vladimir Kruchinin, Apr 04 2019 */
    
  • PARI
    a(n) = if (n==0, 1, sum(j=0, (n+1)/4, (-1)^j*binomial(n,j)*binomial(3*n-4*j, n-4*j+1))/n); \\ Michel Marcus, Apr 05 2019

Formula

G.f.: P1(x) = (2*(1-x)/3)/x - ((2*sqrt(1-5*x-2*x^2)/3)/x)*sin((Pi/6 + arccos(((20*x^3-6*x^2+15*x-2)/2)/(1-5*x-2*x^2)^(3/2))/3)). - See Dziemianczuk (2014), Proposition 11.
a(n) = (1/n)*Sum_{j=0..(n+1)/4} (-1)^j*C(n,j)*C(3*n-4*j,n-4*j+1), a(0)=1. - Vladimir Kruchinin, Apr 04 2019
n*(n+1)*(25*n^2-70*n+21)*a(n) - 30*(7*n-15)*n*a(n-1) + (-1100*n^4+5280*n^3-6424*n^2-1188*n+3816)*a(n-2) + 120*(n+2)*(n-3)*a(n-3) - 16*(n-3)*(n-4)*(25*n^2-20*n-24)*a(n-4) = 0. - Mark van Hoeij, Jul 14 2022
a(n) ~ 2^(n - 1/2) * phi^((10*n - 1)/4) / (sqrt(Pi) * 5^(1/4) * sqrt(phi^(3/2) - 2) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 15 2022

Extensions

More terms from Lars Blomberg, Aug 01 2015

A364477 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^7.

Original entry on oeis.org

1, 1, 3, 14, 76, 448, 2791, 18078, 120516, 821435, 5698422, 40101623, 285583775, 2054272430, 14903954415, 108932920861, 801350333186, 5928653489398, 44084056075057, 329279673851792, 2469493161891742, 18588339309502760, 140383789476473354
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n+3*k, k)*binomial(2*n+2*k, n-2*k)/(n+4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+3*k,k) * binomial(2*n+2*k,n-2*k) / (n+4*k+1).

A369208 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^2) ).

Original entry on oeis.org

1, 2, 8, 38, 200, 1122, 6576, 39790, 246672, 1558658, 10001592, 64997814, 426922392, 2829624514, 18901301984, 127115260894, 859978039840, 5848754717314, 39964745880552, 274231943135686, 1888891689752680, 13055393137141282, 90517646431869328
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^2))/x)
    
  • PARI
    a(n, s=2, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(3*n-2*k+1,n-2*k).
a(n) = (1/(n+1)) *[x^n] ( 1/(1-x)^2 * (1+x^2) )^(n+1). - Seiichi Manyama, Feb 14 2024

A369226 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^2 ).

Original entry on oeis.org

1, 1, 4, 13, 53, 220, 968, 4373, 20271, 95705, 458904, 2228220, 10934524, 54143848, 270189008, 1357428997, 6860264323, 34853234867, 177900211204, 911867479717, 4691701977973, 24222505191984, 125448280976224, 651555603531308, 3392951906596708, 17711433386188300
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^2)^2)/x)
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(2*n-2*k,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^2)^2 )^(n+1). - Seiichi Manyama, Feb 14 2024

A108916 Triangle of Schroeder paths counted by number of diagonal steps not preceded by an east step.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 9, 9, 3, 1, 31, 36, 18, 4, 1, 113, 155, 90, 30, 5, 1, 431, 678, 465, 180, 45, 6, 1, 1697, 3017, 2373, 1085, 315, 63, 7, 1, 6847, 13576, 12068, 6328, 2170, 504, 84, 8, 1, 28161, 61623, 61092, 36204, 14238, 3906, 756, 108, 9, 1, 117631, 281610, 308115, 203640, 90510, 28476, 6510, 1080, 135, 10, 1
Offset: 0

Views

Author

David Callan, Jul 25 2005

Keywords

Comments

T(n,k) = number of Schroeder (= underdiagonal Delannoy) paths of steps east(E), north(N) and diagonal (D) (i.e., northeast) from (0,0) to (n,n) containing k Ds not preceded by an E. Also, T(n,k) = number of Schroeder paths from (0,0) to (n,n) containing k Ds not preceded by an N. This is because there is a simple bijection on Schroeder paths that interchanges the statistics "# Ds not preceded by an E" and "# Ds not preceded by an N": for each E and its matching N, interchange the diagonal segments (possibly empty) immediately following them (a diagonal segment is a maximal sequence of contiguous Ds).

Examples

			Table begins:
\ k..0...1...2...3...4...
n\
0 |..1
1 |..1...1
2 |..3...2...1
3 |..9...9...3...1
4 |.31..36..18...4...1
5 |113.155..90..30...5...1
The paths ENDD, DEND, DDEN each have 2 Ds not preceded by an E and so T(3,2)=3.
		

Crossrefs

Column k=0 is A052709 shifted left. Cf. A110446.

Programs

  • Mathematica
    G[z_, t_] = (1-t*z - ((1-t*z)^2 + 4z(-1-z+t*z))^(1/2))/(2z(1+z-t*z));
    CoefficientList[#, t]& /@ CoefficientList[G[z, t] + O[z]^11, z] // Flatten (* Jean-François Alcover, Oct 06 2019 *)

Formula

G.f.: G(z,t) = Sum_{n>=k>=0} T(n,k)*z^n*t^k satisfies G = 1 + z*t*G + z(1 + z - z*t)G^2 with solution G(z,t) = (1 - t*z - ((1 - t*z)^2 + 4*z*(-1 - z + t*z))^(1/2))/(2*z*(1 + z - t*z)).

A238578 Expansion of -(-4*x^4 + sqrt(-4*x^2-4*x+1) * (2*x^3+x^2-2*x) -12*x^3-7*x^2+2*x) / (sqrt(-4*x^2-4*x+1) * (4*x^3+8*x^2+3*x-1) - 4*x^3-8*x^2-3*x+1).

Original entry on oeis.org

0, 1, 3, 11, 45, 191, 833, 3695, 16593, 75199, 343233, 1575551, 7265921, 33637631, 156234497, 727681791, 3397475585, 15896054783, 74512968705, 349859309567, 1645121398785, 7746058698751, 36516283891713, 172332643868671, 814108326764545, 3849410342715391
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 01 2014

Keywords

Crossrefs

Cf. A052709.

Programs

  • Mathematica
    Table[Sum[Binomial[n - 1, k - 1] * Sum[Binomial[k, n - k - i] * Binomial[k + i - 1, k - 1], {i, 0, n - k}], {k, n}], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 02 2014 *)
    CoefficientList[Series[-(-4*x^4 + Sqrt[-4*x^2-4*x+1]*(2*x^3+x^2-2*x) -12*x^3-7*x^2+2*x)/(Sqrt[-4*x^2-4*x+1]*(4*x^3+8*x^2+3*x-1) - 4*x^3-8*x^2-3*x+1), {x, 0, 50}], x] (* G. C. Greubel, Jun 01 2017 *)
  • Maxima
    a(n):= sum((sum(binomial(k,n-k-i)*binomial(k+i-1,k-1), i,0,n-k)) *binomial(n-1,k-1), k,1,n);
    
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(-(-4*x^4 + sqrt(-4*x^2-4*x+1)*(2*x^3+x^2-2*x) -12*x^3-7*x^2+2*x)/(sqrt(-4*x^2-4*x+1)*(4*x^3+8*x^2+3*x-1) - 4*x^3-8*x^2-3*x+1))) \\ G. C. Greubel, Jun 01 2017
    
  • PARI
    for(n=0,25, print1(sum(k=1,n, binomial(n-1,k-1)*sum(i=0,n-k, binomial(k,n-k-i)*binomial(k+i-1,k-1))), ", ")) \\ G. C. Greubel, Jun 01 2017

Formula

a(n) = Sum_{k=1..n} Sum_{i=0..(n-k)} C(k,n-k-i)*C(k+i-1,k-1)*C(n-1,k-1).
G.f.: A(x) = x*(F(x)-x)*F'(x)/F(x)^2, where F(x) = (1-sqrt(-4*x^2-4*x+1))/(2*x+2), F(x) is the g.f. of A052709.
D-finite with recurrence: (for n>5): (n-5)*(n-1)*a(n) = (3*n^2 - 20*n + 23)*a(n-1) + 2*(n-2)*(4*n-19)*a(n-2) + 4*(n-4)*(n-3)*a(n-3). - Vaclav Kotesovec, Mar 03 2014
a(n) ~ (2 + 2*sqrt(2))^n / (2^(5/4) * sqrt(1+sqrt(2)) * sqrt(Pi*n)). - Vaclav Kotesovec, Mar 03 2014

A364473 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^6.

Original entry on oeis.org

1, 1, 3, 13, 65, 353, 2024, 12057, 73890, 462851, 2950261, 19073921, 124776881, 824409052, 5493384031, 36874564529, 249114808794, 1692489908494, 11556616157589, 79265016880139, 545860966841247, 3772800724433931, 26162662010039826, 181974370638420829
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n+2*k, k)*binomial(2*n+k, n-2*k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+2*k,k) * binomial(2*n+k,n-2*k) / (n+3*k+1).

A366025 Expansion of (1/x) * Series_Reversion( x*(1-x)/(1+x^5) ).

Original entry on oeis.org

1, 1, 2, 5, 14, 43, 139, 465, 1595, 5577, 19804, 71228, 258946, 950030, 3513050, 13079920, 48993149, 184490361, 698020080, 2652192675, 10115878915, 38717526745, 148655862210, 572412768275, 2209969761924, 8553073927858, 33176952295730, 128960722306128
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x(1-x)/(1+x^5),{x,0,28}],x]/x,x] (* Stefano Spezia, Sep 26 2023 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(2*n-5*k+1, n-4*k)/(2*n-5*k+1));
    
  • PARI
    Vec(serreverse(x*(1-x)/(1+x^5)+O(x^30))/x) \\ Michel Marcus, Sep 26 2023

Formula

G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^4*A(x)^3).
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * binomial(2*n-5*k+1,n-4*k)/(2*n-5*k+1) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n+1,k) * binomial(2*n-5*k,n-5*k).

A039977 An example of a d-perfect sequence.

Original entry on oeis.org

1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 1, 0, 2, 2, 1, 0, 0, 2, 2, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 0, 0, 2, 0, 1, 1, 2, 2, 0, 2, 1, 1, 0, 2, 2, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 2, 1, 2, 2, 0, 2, 1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 1, 0, 0, 2, 0, 1, 1, 2, 2, 0, 2, 1, 1, 0, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Formula

a(n) = ((-1)^(n+1)*A052709(n)) mod 3. - Christian G. Bower, Jun 12 2005

Extensions

More terms from Christian G. Bower, Jun 12 2005
Previous Showing 31-40 of 47 results. Next