cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A001094 a(n) = n + n*(n-1)*(n-2)*(n-3).

Original entry on oeis.org

0, 1, 2, 3, 28, 125, 366, 847, 1688, 3033, 5050, 7931, 11892, 17173, 24038, 32775, 43696, 57137, 73458, 93043, 116300, 143661, 175582, 212543, 255048, 303625, 358826, 421227, 491428, 570053, 657750, 755191, 863072, 982113, 1113058
Offset: 0

Views

Author

N. J. A. Sloane, Ray Wills (rwills(AT)vmprofs.estec.esa.nl)

Keywords

Crossrefs

Programs

  • GAP
    List([0..35], n-> n + 24*Binomial(n,4)); # G. C. Greubel, Aug 26 2019
  • Magma
    [n + n*(n-1)*(n-2)*(n-3): n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
    
  • Maple
    seq(n + 4!*binomial(n,4), n=0..35); # G. C. Greubel, Aug 26 2019
  • Mathematica
    Table[n+n(n-1)(n-2)(n-3),{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,1,2,3,28},40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    vector(35, n, (n-1) + 4!*binomial(n-1,4)) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    [n + 24*binomial(n,4) for n in (0..35)] # G. C. Greubel, Aug 26 2019
    

Formula

G.f.: x*(1 -3*x +3*x^2 +23*x^3)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=28. - Harvey P. Dale, Feb 02 2012
From G. C. Greubel, Aug 26 2019: (Start)
a(n) = n + 4!*binomial(n,4).
E.g.f.: x*(1+x^3)*exp(x). (End)

Extensions

More terms from James Sellers, Sep 19 2000

A190136 Largest prime factor of n*(n+1)*(n+2)*(n+3).

Original entry on oeis.org

3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 13, 13, 29, 29, 31, 31, 31, 31, 17, 17, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 17, 17, 53, 53, 53, 53, 19, 29, 59, 59, 61, 61, 61, 61, 31, 13, 67, 67, 67
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2011

Keywords

Comments

a(n) > 11 for n > 9;
a(A086801(n)) = A000040(n) for n > 2.
It follows from Størmer's theorem that lim inf a(n) = infinity, and in fact a(n) >> log log n. - Charles R Greathouse IV, Feb 19 2013

Examples

			Numbers m <= 10^6 such that a(m) = p:
p=13: 10, 11, 12, 13, 24, 25, 63;
p=17: 14, 15, 32, 33, 48, 49;
p=19: 16, 17, 18, 19, 54, 75, 168;
p=23: 20, 21, 22, 23, 207, 322;
p=29: 26, 27, 55, 114;
p=31: 28, 29, 30, 31, 62, 90, 152, 153, 340, 493, 1518;
p=37: 34, 35, 36, 37, 74, 184, 405;
p=41: 38, 39, 123, 245, 285, 286, 287, 492, 1023, 1517, 1680;
p=43: 40, 41, 42, 43, 84, 85, 169, 258, 341, 342, 558, 1330, 1331, 2106, 5289, 10878;
p=47: 44, 45, 46, 47, 91, 92, 93, 185, 186, 187, 374, 375, 702, 986, 987, 17575;
p=53: 50, 51, 52, 53, 159, 368, 369, 527, 845, 899, 900, 1375;
p=59: 56, 57, 115, 116, 117, 118, 174, 294, 528, 529, 530, 648, 943, 1885, 6783;
p=61: 58, 59, 60, 61, 119, 120, 121, 122, 182, 183, 242, 243, 244, 549, 608, 609, 1034, 1218, 1219, 1767, 1768, 2013, 2254, 2622;
p=67: 64, 65, 66, 67, 132, 133, 735, 1271, 1272, 1273, 2208, 2277, 3885, 4958, 5828, 5829;
p=71: 68, 69, 140, 141, 142, 284, 423, 424, 494, 636, 637, 779, 780, 781, 3477, 3478, 3549, 3550, 4899;
p=73: 70, 71, 72, 73, 143, 144, 145, 219, 363, 510, 728, 729, 803, 1022, 1239, 1679, 2772, 70224;
p=79: 76, 77, 78, 79, 158, 234, 235, 472, 473, 474, 550, 867, 868, 1024, 1104, 1419, 2209, 2448, 2923, 3476, 3869, 4898, 5290, 7502, 46136, 70150;
p=83: 80, 81, 82, 83, 246, 247, 413, 495, 663, 664, 1078, 1159, 1824, 2736, 3483, 4232, 4896, 4897, 7137, 8214, 12614, 36517, 97524;
p=89: 86, 87, 88, 89, 175, 264, 265, 354, 531, 710, 711, 712, 798, 1245, 1332, 2847, 4895, 5073, 6318, 18423, 28302, 29279;
p=97: 94, 95, 96, 97, 288, 289, 483, 580, 581, 582, 774, 873, 1064, 1065, 1455, 2132, 2133, 3007, 3975, 4556, 4557, 6496, 6497, 6887, 7564, 7565, 7566, 13869, 17457.
		

References

  • Paulo Ribenboim, Galimatias Arithmeticae (Chap 11), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 345.
  • J. J. Sylvester, "On arithmetical series", Messenger of Mathematics 21 (1892), pp. 1-19 and 87-120.
  • M. Faulkner, "On a theorem of Sylvester and Schur", J. London Math. Soc. 41:1 (1966), pp. 107-110.

Crossrefs

Programs

  • Haskell
    a190136 n = maximum $ map a006530 [n..n+3]
    
  • Mathematica
    Table[FactorInteger[Times@@(n+Range[0,3])][[-1,1]],{n,70}] (* Harvey P. Dale, Mar 19 2018 *)
  • PARI
    gpf(n)=vecmax(factor(n)[,1])
    a(n)=my(p=precprime(n+3));if(pCharles R Greathouse IV, Feb 19 2013

Formula

a(n) = max{gpf(n), gpf(n+1), gpf(n+2), gpf(n+3)} = gpf(A052762(n+3)) with gpf = A006530, greatest prime factor.
a(n) > 47 for n > 17575. - Charles R Greathouse IV, Feb 19 2013

A230339 Numerator of Sum_{k=1..n} 1/(k(k+1)(k+2)(k+3)) = Sum_{k=1..n} 1/Pochhammer(k,4).

Original entry on oeis.org

0, 1, 1, 19, 17, 55, 83, 119, 82, 73, 95, 121, 227, 559, 679, 815, 484, 1139, 443, 171, 295, 2023, 2299, 2599, 1462, 3275, 3653, 451, 749, 551, 5455, 5983, 3272, 7139, 7769, 8435, 1523, 3293, 3553, 11479, 6170, 13243, 14189, 15179, 8107, 5765
Offset: 0

Views

Author

Jean-François Alcover, Oct 16 2013

Keywords

Examples

			1/(1*2*3*4) + 1/(2*3*4*5) + 1/(3*4*5*6) = 19/360, so a(3) = 19.
The rationals r(n) = a(n)/A230340(n) begin: 0, 1/24, 1/20, 19/360, 17/315, 55/1008, 83/1512, 119/2160, 82/1485, 73/1320, 95/1716, 121/2184, 227/4095, 559/10080, 679/12240, 815/14688, ... - _Wolfdieter Lang_, Mar 08 2018
		

References

  • L. B. W. Jolley, Summation of Series, Second revised ed., Dover, 1961, p.38, (202) and (201).

Crossrefs

Cf. A001563, A052762, A094258, A125650, A230328, A230340 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[1/18 - 1/(3*(n+1)*(n+2)*(n+3))]; Table[a[n], {n, 0, 100}]
  • PARI
    a(n) = numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) \\ Colin Barker, Jul 30 2019

Formula

Numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) (from the generic formula Sum_{k=1..n} 1/Pochhammer(k, m) = 1/((m-1)*(m-1)!) - 1/((m-1)*Pochhammer(n+1, m-1)) with m = 4).
G.f. for the rationals r(n) = (1/18)*n*(11+n^2+6*n)/((1+n)*(n+2)*(n+3)) = a(n)/A230340(n): (1/18)*(1 - hypergeometric([1, 3], [4], -x/(1-x)))/(1-x) = (6*x - 15*x^2 + 11*x^3 + 6*(1 - 3*x + 3*x^2 - x^3)*log(1-x))/(36*x^3*(1-x)). - Wolfdieter Lang, Mar 08 2018
a(n) = numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))). - Colin Barker, Jul 30 2019

A293617 Array of triangles read by ascending antidiagonals, T(m, n, k) = Pochhammer(m, k) * Stirling2(n + m, k + m) with m >= 0, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 2, 1, 0, 1, 10, 3, 7, 3, 0, 1, 15, 4, 25, 12, 2, 0, 1, 21, 5, 65, 30, 6, 1, 0, 1, 28, 6, 140, 60, 12, 15, 7, 0, 1, 36, 7, 266, 105, 20, 90, 50, 12, 0, 1, 45, 8, 462, 168, 30, 350, 195, 60, 6, 0, 1, 55, 9, 750, 252, 42, 1050, 560, 180, 24, 1, 0
Offset: 0

Views

Author

Peter Luschny, Oct 20 2017

Keywords

Examples

			Array starts:
m\j| 0   1  2     3       4       5       6       7       8       9      10
---|-----------------------------------------------------------------------
m=0| 1,  0, 0,    0,      0,      0,      0,      0,      0,      0,      0
m=1| 1,  1, 1,    1,      3,      2,      1,      7,     12,      6,      1
m=2| 1,  3, 2,    7,     12,      6,     15,     50,     60,     24,     31
m=3| 1,  6, 3,   25,     30,     12,     90,    195,    180,     60,    301
m=4| 1, 10, 4,   65,     60,     20,    350,    560,    420,    120,   1701
m=5| 1, 15, 5,  140,    105,     30,   1050,   1330,    840,    210,   6951
m=6| 1, 21, 6,  266,    168,     42,   2646,   2772,   1512,    336,  22827
m=7| 1, 28, 7,  462,    252,     56,   5880,   5250,   2520,    504,  63987
m=8| 1, 36, 8,  750,    360,     72,  11880,   9240,   3960,    720, 159027
m=9| 1, 45, 9, 1155,    495,     90,  22275,  15345,   5940,    990, 359502
   A000217, A001296,A027480,A002378,A001297,A293475,A033486,A007531,A001298
.
m\j| ...      11      12      13      14
---|-----------------------------------------
m=0| ...,      0,      0,      0,      0, ... [A000007]
m=1| ...,     15,     50,     60,     24, ... [A028246]
m=2| ...,    180,    390,    360,    120, ... [A053440]
m=3| ...,   1050,   1680,   1260,    360, ... [A294032]
m=4| ...,   4200,   5320,   3360,    840, ...
m=5| ...,  13230,  13860,   7560,   1680, ...
m=6| ...,  35280,  31500,  15120,   3024, ...
m=7| ...,  83160,  64680,  27720,   5040, ...
m=8| ..., 178200, 122760,  47520,   7920, ...
m=9| ..., 353925, 218790,  77220,  11880, ...
         A293476,A293608,A293615,A052762, ...
.
The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A053440, T(3, 2) is row 2 of A294032 (which is [25, 30, 12]) and T(3, 2, 1) = 30.
.
Remark: To adapt the sequences A028246 and A053440 to our enumeration use the exponential generating functions exp(x)/(1 - y*(exp(x) - 1)) and exp(x)*(2*exp(x) - y*exp(2*x) + 2*y*exp(x) - 1 - y)/(1 - y*(exp(x) - 1))^2 instead of those indicated in their respective entries.
		

Crossrefs

A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A027480(n) = T(n, 2, 1),
A002378(n) = T(n, 2, 2), A001297(n) = T(n, 3, 0), A293475(n) = T(n, 3, 1),
A033486(n) = T(n, 3, 2), A007531(n) = T(n, 3, 3), A001298(n) = T(n, 4, 0),
A293476(n) = T(n, 4, 1), A293608(n) = T(n, 4, 2), A293615(n) = T(n, 4, 3),
A052762(n) = T(n, 4, 4), A052787(n) = T(n, 5, 5), A000225(n) = T(1, n, 1),
A028243(n) = T(1, n, 2), A028244(n) = T(1, n, 3), A028245(n) = T(1, n, 4),
A032180(n) = T(1, n, 5), A228909(n) = T(1, n, 6), A228910(n) = T(1, n, 7),
A000225(n) = T(2, n, 0), A007820(n) = T(n, n, 0).
A028246(n,k) = T(1, n, k), A053440(n,k) = T(2, n, k), A294032(n,k) = T(3, n, k),
A293926(n,k) = T(n, n, k), A124320(n,k) = T(n, k, k), A156991(n,k) = T(k, n, n).
Cf. A293616.

Programs

  • Maple
    A293617 := proc(m, n, k) option remember:
    if m = 0 then 0^n elif k < 0 or k > n then 0 elif n = 0 then 1 else
    (k+m)*A293617(m,n-1,k) + k*A293617(m,n-1,k-1) + A293617(m-1,n,k) fi end:
    for m in [$0..4] do for n in [$0..6] do print(seq(A293617(m, n, k), k=0..n)) od od;
    # Sample uses:
    A027480 := n -> A293617(n, 2, 1): A293608 := n -> A293617(n, 4, 2):
    # Flatten:
    a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1;
    while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end:
    seq(A293617(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11);
  • Mathematica
    T[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];
    For[m = 0, m < 7, m++, Print[Table[T[m, n, k], {n,0,6}, {k,0,n}]]]
    A293617Row[m_, n_] := Table[T[m, n, k], {k,0,n}];
    (* Sample use: *)
    A293926Row[n_] := A293617Row[n, n];

Formula

T(m,n,k) = (k + m)*T(m, n-1, k) + k*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k<0 or k>n; and T(m, 0, k) = 0^k.
T(m,n,k) = Pochhammer(m, k)*binomial(n + m, k + m)*NorlundPolynomial(n - k, -k - m).

A011933 a(n) = floor( n*(n-1)*(n-2)*(n-3)/23 ).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 36, 73, 131, 219, 344, 516, 746, 1044, 1424, 1899, 2483, 3193, 4044, 5055, 6245, 7633, 9240, 11088, 13200, 15600, 18313, 21365, 24783, 28596, 32833, 37523, 42699, 48392, 54636, 61466, 68916, 77024, 85827, 95363, 105673, 116796, 128775, 141653, 155473, 170280, 186120, 203040, 221088
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(24*Binomial(n,4)/23): n in [0..80]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Floor[(n(n-1)(n-2)(n-3))/23],{n,0,60}] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    a(n) = n*(n-1)*(n-2)*(n-3)\23; \\ Michel Marcus, Jun 14 2017
    
  • SageMath
    [24*binomial(n,4)//23 for n in range(81)] # G. C. Greubel, Nov 03 2024

Formula

From Chai Wah Wu, Aug 02 2020: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-23) - 4*a(n-24) + 6*a(n-25) - 4*a(n-26) + a(n-27) for n > 26.
G.f.: x^4*(1+x^2)*(1 + x + x^3 - x^5 + 4*x^6 - x^7 - x^8 + 2*x^9 + 2*x^11 - x^12 - x^13 + 4*x^14 - x^15 + x^17 + x^19 + x^20)/((1-x)^4*(1-x^23)). (End)

Extensions

More terms added by G. C. Greubel, Nov 03 2024

A158874 a(n) = (n + 4)*(n + 3)*(n + 2)*(n + 1)*n / 5 = 24*A000389(n+4).

Original entry on oeis.org

0, 24, 144, 504, 1344, 3024, 6048, 11088, 19008, 30888, 48048, 72072, 104832, 148512, 205632, 279072, 372096, 488376, 632016, 807576, 1020096, 1275120, 1578720, 1937520, 2358720, 2850120, 3420144, 4077864, 4833024, 5696064, 6678144, 7791168, 9047808
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2009

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (48), page 8.

Crossrefs

Partial sums of A052762.

Programs

  • Magma
    [n*(n^4+10*n^3+35*n^2+50*n+24)/5: n in [0..30]]; // Vincenzo Librandi, Oct 05 2011
    
  • Mathematica
    Table[(n + 4)*(n + 3)*(n + 2)*(n + 1)*n/5, {n,0,50}] (* G. C. Greubel, Nov 21 2017 *)
  • PARI
    for(n=0,30, print1((n + 4)*(n + 3)*(n + 2)*(n + 1)*n/5, ", ")) \\ G. C. Greubel, Nov 21 2017

Formula

G.f.: 24*x / (x-1)^6 . - R. J. Mathar, Oct 03 2011
E.g.f.: x*(x^4 + 20*x^3 + 120*x^2 + 240*x + 120)*exp(x)/5. - G. C. Greubel, Nov 21 2017
From Amiram Eldar, Jul 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 5/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = 10*log(2)/3 - 655/288. (End)

A230340 Denominator of Sum_{k=1..n} 1/(k(k+1)(k+2)(k+3)) = Sum_{k=1..n} 1/Pochhammer(k,4).

Original entry on oeis.org

1, 24, 20, 360, 315, 1008, 1512, 2160, 1485, 1320, 1716, 2184, 4095, 10080, 12240, 14688, 8721, 20520, 7980, 3080, 5313, 36432, 41400, 46800, 26325, 58968, 65772, 8120, 13485, 9920, 98208, 107712, 58905, 128520, 139860, 151848, 27417, 59280
Offset: 0

Views

Author

Jean-François Alcover, Oct 16 2013

Keywords

Examples

			1/(1*2*3*4) + 1/(2*3*4*5) + 1/(3*4*5*6) = 19/360, so a(3) = 360.
		

Crossrefs

Cf. A001563, A052762, A094258, A125650, A230328, A230339 (numerators).

Programs

  • Magma
    [Denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))):n in [0..100]]; // Marius A. Burtea, Jul 30 2019
  • Mathematica
    a[n_] := Denominator[1/18 - 1/(3*(n+1)*(n+2)*(n+3))]; Table[a[n], {n, 0, 100}]
  • PARI
    a(n) = denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) \\ Colin Barker, Jul 30 2019
    

Formula

Denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))).

A351697 32*a(n) is the denominator of the squared circumradius of a cyclic quadrilateral with sides n, n+1, n+2, n+3.

Original entry on oeis.org

3, 15, 5, 105, 210, 42, 630, 990, 165, 2145, 3003, 455, 5460, 7140, 1020, 11628, 14535, 1995, 21945, 26565, 3542, 37950, 44850, 5850, 61425, 71253, 9135, 94395, 107880, 13640, 139128, 157080, 19635, 198135, 221445, 27417, 274170, 303810, 37310, 370230, 407253, 49665
Offset: 1

Views

Author

Hugo Pfoertner, Feb 26 2022

Keywords

Examples

			(1/32)*{385/3, 3289/15, 1729/5, 53041/105, 146329/210, 38665/42, ...}
		

Crossrefs

A351696 gives the corresponding numerators.

Formula

a(n) = denominator(b(n)), where b(n) = (8*(2*n^6 + 18*n^5 + 65*n^4 + 120*n^3 + 117*n^2 + 54*n + 9))/(n^4 + 6*n^3 + 11*n^2 + 6*n).

A054777 a(n) = 4*n*(4*n-1)*(4*n-2)*(4*n-3).

Original entry on oeis.org

0, 24, 1680, 11880, 43680, 116280, 255024, 491400, 863040, 1413720, 2193360, 3258024, 4669920, 6497400, 8814960, 11703240, 15249024, 19545240, 24690960, 30791400, 37957920, 46308024, 55965360, 67059720, 79727040, 94109400, 110355024, 128618280, 149059680, 171845880
Offset: 0

Views

Author

Henry Bottomley, May 19 2000

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 268.

Crossrefs

Programs

  • Magma
    [4*n*(4*n-1)*(4*n-2)*(4*n-3): n in [0..30]]; // Vincenzo Librandi, Oct 04 2011
  • Mathematica
    a[n_] := 4*n*(4*n-1)*(4*n-2)*(4*n-3); Array[a, 40, 0] (* Amiram Eldar, Mar 08 2022 *)

Formula

a(n) = A052762(4n) = 24*A060541(n).
Sum_{n>=1} 1/a(n) = log(2)/4 - Pi/24 = 0.0423871012404116... [Jolley eq. 242] - Benoit Cloitre, Apr 05 2002
G.f. -24*x*(1 + 65*x + 155*x^2 + 35*x^3) / (x-1)^5. - R. J. Mathar, Oct 03 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = log(sqrt(2)-1)/(6*sqrt(2)) - log(2)/24 + (1/(6*sqrt(2)) - 1/16)*Pi. - Amiram Eldar, Mar 08 2022

A117465 Denominator of -16/((n+2)*n*(n-2)*(n-4)).

Original entry on oeis.org

9, 0, 15, 0, 105, 24, 945, 120, 3465, 360, 9009, 840, 19305, 1680, 36465, 3024, 62985, 5040, 101745, 7920, 156009, 11880, 229425, 17160, 326025, 24024, 450225, 32760, 606825, 43680, 801009, 57120, 1038345, 73440, 1324785, 93024, 1666665, 116280
Offset: 1

Views

Author

Steven J. Forsberg, Apr 25 2006

Keywords

Comments

I came up with the equation to help analyze the path to stable orbits of the logistic function
f(n+1) = k*n(1-n) for f(n) with n => 9, then f(n)*A072346(n-5) = A072346(n+3).
a(n) is the denominator of f(n). The numerator of f(n) is -1 if n is even, else -16.

Examples

			f(5) = -16/(7*5*3*1) = -16/105, denominator a(5) = 105.
f(6) = -16/(8*6*4*2) = -1/24, denominator a(6) = 24.
		

Crossrefs

Programs

  • Maple
    f(n) := n -> (1/((n/4)+(n^2/4)-(n^3/16)-1))/n;
  • Mathematica
    Join[{9,0,15,0},Denominator[Table[-(16/(n (n^3-4 n^2-4 n+16))), {n,5,40}]]]    (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    Vec(3*x*(10*x^12-50*x^10+105*x^8-160*x^6-8*x^5-40*x^4+10*x^2-3)/((x-1)^5*(x+1)^5) + O(x^100)) \\ Colin Barker, Nov 11 2014

Formula

a(n) = denominator of the reduced -16/(n*(n-2)*(n+2)*(n-4)).
a(2n) = A052762(n+1).
a(n) = 5*a(n-2) -10*a(n-4) +10*a(n-6) -5*a(n-8) +a(n-10) for n>15. - R. J. Mathar, Mar 27 2010
a(n) = -(-17+15*(-1)^n)*(n*(16-4*n-4*n^2+n^3))/32 for n>3. - Colin Barker, Nov 11 2014
G.f.: 3*x*(10*x^12-50*x^10+105*x^8-160*x^6-8*x^5-40*x^4+10*x^2-3) / ((x-1)^5*(x+1)^5). - Colin Barker, Nov 11 2014

Extensions

Clearer definition from R. J. Mathar, Mar 27 2010
Previous Showing 21-30 of 35 results. Next