cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A350704 Composite numbers that have no Sophie Germain prime factors.

Original entry on oeis.org

49, 91, 119, 133, 169, 217, 221, 247, 259, 289, 301, 323, 329, 343, 361, 403, 413, 427, 469, 481, 497, 511, 527, 553, 559, 589, 611, 629, 637, 679, 703, 707, 721, 731, 749, 763, 767, 793, 799, 817, 833, 871, 889, 893, 923, 931, 949, 959, 961, 973, 1003, 1027, 1037, 1043
Offset: 1

Views

Author

Karl-Heinz Hofmann, Feb 11 2022

Keywords

Comments

A157342 is a subsequence. First differs at a(14) = 343.
A350705 is a subsequence too.

Examples

			a(2) = 91 = 7 * 13 and {7, 13} are not in A005384.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], CompositeQ[#] && AllTrue[FactorInteger[#][[;; , 1]], !PrimeQ[2*#1 + 1] &] &] (* Amiram Eldar, Feb 12 2022 *)
  • PARI
    isok(m) = if ((m>1) && !isprime(m), !#select(x->isprime(2*x+1), factor(m)[,1])); \\ Michel Marcus, Feb 11 2022
  • Python
    from sympy import primefactors, isprime
    print([n for n in range(2,1044) if not isprime(n) and all(not isprime(p*2+1) for p in primefactors(n))])
    

A350705 Composite numbers that have no Sophie Germain prime and no "safe prime" factors.

Original entry on oeis.org

169, 221, 247, 289, 323, 361, 403, 481, 527, 559, 589, 629, 703, 731, 793, 817, 871, 923, 949, 961, 1027, 1037, 1139, 1147, 1159, 1207, 1241, 1261, 1273, 1313, 1333, 1339, 1343, 1349, 1369, 1387, 1417, 1501, 1591, 1649, 1651, 1717, 1751, 1781, 1807, 1843, 1849, 1853
Offset: 1

Views

Author

Karl-Heinz Hofmann, Feb 14 2022

Keywords

Comments

Prime factors of the terms have to be in A059500.

Examples

			a(2) = 221 = 13 * 17 and {13, 17} are neither in A005384 nor in A005385, but they are in A059500.
		

Crossrefs

Subsequence of A350704 and A350706.

Programs

  • Mathematica
    Select[Range[2000], CompositeQ[#] && AllTrue[FactorInteger[#][[;; , 1]], ! PrimeQ[2*#1 + 1] && ! PrimeQ[(#1 - 1)/2] &] &] (* Amiram Eldar, Feb 15 2022 *)
  • PARI
    isok(m) = if ((m>1) && !isprime(m), my(f=factor(m)[,1]); !#select(x->isprime(2*x+1), f) && !#select(x->isprime((x-1)/2), f)); \\ Michel Marcus, Feb 14 2022
  • Python
    from sympy import primefactors, isprime
    print([n for n in range(2,1854) if not isprime(n) and all(not isprime(p*2+1) and not isprime((p-1)//2) for p in primefactors(n))])
    

A367035 Numbers k such that the greatest prime less than 2*k is less than twice the greatest prime less than k.

Original entry on oeis.org

8, 14, 18, 20, 32, 33, 38, 39, 44, 48, 60, 61, 62, 63, 68, 72, 73, 74, 80, 81, 98, 102, 103, 104, 105, 108, 109, 110, 111, 128, 138, 140, 150, 151, 152, 153, 158, 164, 165, 168, 182, 183, 194, 198, 200, 212, 213, 214, 215, 224, 228, 230, 242, 243, 258, 259, 260, 264, 265, 266, 267, 268, 269, 270
Offset: 1

Views

Author

Robert Israel, Dec 15 2023

Keywords

Comments

Numbers k such that A049711(2 * k) > 2 * A049711(k).

Examples

			a(3) = 18 is a term because the greatest prime < 18 is 17, the greatest prime < 2*18 = 36 is 31, and 31 < 2 * 17.
		

Crossrefs

Includes k+1 for k in A053176. Disjoint from A006254.

Programs

  • Maple
    select(k -> prevprime(2*k) < 2*prevprime(k), [$3..300]);
  • PARI
    isok(k) = precprime(2*k-1) < 2*precprime(k-1); \\ Michel Marcus, Dec 16 2023

A059688 Length of Cunningham chain containing prime(n) either as initial, internal or final term.

Original entry on oeis.org

5, 2, 5, 2, 5, 0, 0, 0, 5, 2, 0, 0, 3, 0, 5, 2, 2, 0, 0, 0, 0, 0, 3, 6, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 3, 2, 6, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Labos Elemer, Feb 06 2001

Keywords

Comments

The length of a chain is measured by the total number of terms including the end points. a(n)=0 means that prime(n) is neither Sophie Germain nor a safe prime (i.e. it is in A059500).

Examples

			For all of {2,5,11,23,47}, i.e. at positions {j}={1,3,5,9,15} a(j)=5. Similarly for indices of all terms in {89,...,5759} a(i)=6. No chains are intelligible with length = 1 because the minimal chain enclose one Sophie Germain and also one safe prime. Dominant values are 0 and 2.
		

Crossrefs

Extensions

Offset and a(5) corrected by Sean A. Irvine, Oct 01 2022

A138887 Numbers that are not Sophie Germain primes.

Original entry on oeis.org

0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
Offset: 0

Views

Author

Omar E. Pol, Apr 05 2008

Keywords

Comments

Nonnegative integers that are not in A005384.
A156660(a(n)) = 0; A053176 is a subsequence. [From Reinhard Zumkeller, Feb 18 2009]

Crossrefs

A230225 Primes p such that 2*p+1 and 2*p+3 are not prime.

Original entry on oeis.org

31, 37, 59, 61, 71, 79, 101, 103, 107, 109, 149, 151, 163, 181, 211, 241, 257, 263, 271, 311, 313, 317, 331, 347, 367, 373, 389, 401, 421, 433, 449, 457, 461, 479, 499, 521, 541, 569, 571, 577, 587, 601, 619, 631, 661, 673, 677, 691, 701, 709, 727, 733, 751
Offset: 1

Views

Author

Vincenzo Librandi, Oct 12 2013

Keywords

Examples

			31 is in the sequence because 2*31+1=63 and 2*31+3=65 are not prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500)|not IsPrime(2*p+1) and not IsPrime(2*p+3)];
  • Mathematica
    Select[Range[10^3], PrimeQ[#]&&!PrimeQ[2 # + 1]&&!PrimeQ[2 # + 3]&]
    Select[Prime[Range[200]],NoneTrue[2#+{1,3},PrimeQ]&] (* Harvey P. Dale, Sep 19 2021 *)

A292084 a(n) = least prime p such that 2*p + 1 equals (2*n - 1)*q where q is a prime, or 0 if no such p exists.

Original entry on oeis.org

0, 7, 7, 17, 13, 71, 19, 37, 59, 47, 31, 149, 37, 67, 43, 263, 181, 227, 1091, 97, 61, 107, 67, 1433, 73, 127, 79, 137, 199, 383, 701, 157, 97, 167, 103, 461, 109, 487, 269, 197, 283, 2531, 127, 739, 311, 227, 139, 617, 2861, 643, 151, 257, 157, 1979, 163, 277
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 08 2017

Keywords

Comments

Conjecture: 7 <= a(n) <= 4*n^2 - 5*n + 1 for n > 1. This conjecture implies that for every odd k > 1 there exist two primes p and q < 2*k such that k = (2*p + 1)/q.
Every positive term belongs to A053176.

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [2..56] do q:=1; repeat q+:=2; p:=Truncate((2*n*q-q-1)/2); until IsPrime(p) and IsPrime(q); Append(~lst, p); end for; [0] cat lst;
    
  • PARI
    a(n) = {if (n==1, return(0)); forprime(p=3, , q = (2*p+1)/(2*n-1); if ((denominator(q) == 1) && isprime(q), return (p)););} \\ Michel Marcus, Sep 16 2017

A043298 Numbers n such that B(6*n) has denominator 42 where B(2k) are the Bernoulli numbers.

Original entry on oeis.org

1, 19, 31, 43, 59, 67, 71, 79, 97, 109, 127, 139, 149, 157, 163, 167, 193, 197, 199, 211, 223, 227, 229, 269, 307, 317, 337, 349, 353, 361, 379, 383, 389, 401, 409, 421, 433, 439, 449, 457, 463, 479, 487, 499, 521, 523, 541, 547, 563, 569, 571, 587, 589, 599
Offset: 1

Views

Author

Benoit Cloitre, Mar 24 2002

Keywords

Comments

Except for 1 and 361=19^2 terms listed are primes.
Most a(n) are primes p such that 2p+1 is composite A053176. Nonprime a(n) (except a(1) = 1) are the powers or the products of primes from a(n). For example, 361 = 19^2, 589 = 19*31, 961 = 31^2, 1333 = 31*43, 1849 = 43^2, 2071 = 19*109, 2077 = 31*67, 2201 = 31*71, 2449 = 31*79, 2537 = 43*59, 2641 = 19*139, 2881 = 43*67, 2983 = 19*157, 3053 = 43*71, 3173 = 19*167, ..., 6859 = 19^3. - Alexander Adamchuk, Jul 28 2006

Crossrefs

Programs

  • Mathematica
    Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 7}], Print[n/6]], {n, 1, 10000}] (* Alexander Adamchuk, Jul 28 2006 *)
    Select[Range[600],Denominator[BernoulliB[6#]]==42&] (* Harvey P. Dale, Jan 09 2024 *)

Extensions

Corrected and extended by Ralf Stephan, Oct 21 2002
More terms from Alexander Adamchuk, Jul 28 2006

A059690 Number of distinct Cunningham chains of first kind whose initial prime (cf. A059453) <= 2^n.

Original entry on oeis.org

1, 2, 2, 2, 3, 5, 7, 13, 20, 31, 52, 83, 142, 242, 412, 742, 1308, 2294, 4040, 7327, 13253, 24255, 44306, 81700, 150401, 277335, 513705, 954847, 1780466, 3325109, 6224282, 11676337, 21947583, 41327438
Offset: 1

Views

Author

Labos Elemer, Feb 06 2001

Keywords

Examples

			a(11)-a(10) = 21 means that between 1024 and 2048 exactly 21 primes introduce Cunningham chains: {1031, 1049, 1103, 1223, 1229, 1289, 1409, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003}.
Their lengths are 2, 3 or 4. Thus the complete chains spread over more than one binary size-zone: {1409, 2819, 5639, 11279}. The primes 1439 and 2879 also form a chain but 1439 is not at the beginning of that chain, 89 is.
		

Crossrefs

Programs

  • Mathematica
    c = 0; k = 1; Do[ While[k <= 2^n, If[ PrimeQ[k] && !PrimeQ[(k - 1)/2] && PrimeQ[2k + 1], c++ ]; k++ ]; Print[c], {n, 1, 29}]
  • Python
    from itertools import count, islice
    from sympy import isprime, primerange
    def c(p): return not isprime((p-1)//2) and isprime(2*p+1)
    def agen():
        s = 1
        for n in count(2):
            yield s; s += sum(1 for p in primerange(2**(n-1)+1, 2**n) if c(p))
    print(list(islice(agen(), 20))) # Michael S. Branicky, Oct 09 2022

Extensions

Edited and extended by Robert G. Wilson v, Nov 23 2002
Title and a(30)-a(31) corrected, and a(32) from Sean A. Irvine, Oct 02 2022
a(33)-a(34) from Michael S. Branicky, Oct 09 2022

A072607 If D[n] is divisor-set of n, then in set of 1+D only 2 primes occur:{2,3}; also n is not squarefree.

Original entry on oeis.org

98, 338, 578, 686, 722, 1274, 1862, 1922, 2366, 2738, 3038, 3626, 3698, 4214, 4394, 4418, 4802, 5054, 5978, 6422, 6566, 6962, 7154, 7442, 7742, 8918, 8978, 9386, 9506, 9826, 9898, 10082, 10094, 10478, 10658, 10682, 12446, 12482, 12506, 13034, 13426
Offset: 1

Views

Author

Labos Elemer, Jun 24 2002

Keywords

Examples

			n = 338 = 2*13*13 is not squarefree; D = {1,2,13,26,169,338}; 1 + D = {2,3,14,27,170,339} contains only two primes {2,3}. Such numbers are nonsquarefree even nontotient numbers (from A005277), present also in A051222. Their odd prime divisors seem to arise from A053176.
		

Crossrefs

Programs

  • Mathematica
    di[x_] := Divisors[x] dp[x_] := Part[di[x], Flatten[Position[PrimeQ[1+di[x]], True]]]+1 Do[s=Length[dp[n]]; If[Equal[s, 2]&&Equal[MoebiusMu[n], 0], Print[n]], {n, 1, 25000}]
Previous Showing 21-30 of 38 results. Next