A155518
Number of permutations p of {1,2,...,n} such that p(j) + p(n+1-j) != n+1 for all j.
Original entry on oeis.org
1, 0, 0, 4, 16, 64, 384, 2880, 23040, 208896, 2088960, 23193600, 278323200, 3640688640, 50969640960, 768126320640, 12290021130240, 209688566169600, 3774394191052800, 71921062285148160, 1438421245702963200
Offset: 0
a(3)=4 because we have 132, 312, 213 and 231 (123 and 321 do not qualify).
-
g[0] := 1: g[1] := 0: for n from 2 to 20 do g[n] := (2*(n-1))*(g[n-1]+g[n-2]) end do: a := proc (n) if `mod`(n, 2) = 1 then factorial((1/2)*n-1/2)*2^((1/2)*n-1/2)*g[(1/2)*n+1/2] else factorial((1/2)*n)*2^((1/2)*n)*g[(1/2)*n] end if end proc: seq(a(n), n = 0 .. 24);
A189849
a(0)=1, a(1)=0, a(n) = 4*n*(n-1)*(a(n-1) + 2*(n-1)*a(n-2)).
Original entry on oeis.org
1, 0, 16, 384, 23040, 2088960, 278323200, 50969640960, 12290021130240, 3774394191052800, 1438421245702963200, 666120016990568448000, 368420070161105761075200, 239869937154980747988172800, 181598769336835394381021184000, 158184707164826878472739618816000
Offset: 0
-
[(-2)^n*Factorial(n)*(&+[(-1/2)^k*Binomial(n,k)*Factorial(2*k)/Factorial(k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jan 13 2018
-
a:= n-> (-2)^n*n!*add((-1/2)^i*binomial(n, i)*(2*i)!/i!, i=0..n): seq(a(n), n=0..20);
-
Table[(-2)^n*n!*Sum[(-1/2)^i*Binomial[n,i]*(2*i)!/i!,{i,0,n}],{n,1,20}]
RecurrenceTable[{a[0]==1,a[1]==0,a[n]==4n(n-1)(a[n-1]+2(n-1)a[n-2])},a,{n,20}] (* Harvey P. Dale, May 02 2012 *)
-
a[0]:1$ a[1]:0$ a[n]:=4*n*(n-1)*(a[n-1]+2*(n-1)*a[n-2])$ makelist(a[n], n, 0, 13); /* Bruno Berselli, May 23 2011 */
-
for(n=0,30, print1((-2)^n*n!*sum(k=0,n, (-1/2)^k*binomial(n,k)*(2*k)!/k!), ", ")) \\ G. C. Greubel, Jan 13 2018
A292080
Number of nonequivalent ways to place n non-attacking rooks on an n X n board with no rook on 2 main diagonals up to rotations and reflections of the board.
Original entry on oeis.org
1, 0, 0, 0, 2, 2, 14, 84, 630, 6096, 55336, 672160, 7409300, 104999520, 1366363752, 22068387264, 331233939624, 6005919062528, 102144359744192, 2054811316442112, 39053339674065360, 863259240785840640, 18132529836143846560, 436899062862222484480
Offset: 0
Case n=4: The 2 nonequivalent solutions are:
_ x _ _ _ x _ _
x _ _ _ _ _ _ x
_ _ _ x x _ _ _
_ _ x _ _ _ x _
Case n=5: The 2 nonequivalent solutions are:
_ x _ _ _ _ x _ _ _
x _ _ _ _ _ _ _ _ x
_ _ _ x _ x _ _ _ _
_ _ _ _ x _ _ x _ _
_ _ x _ _ _ _ _ x _
-
sf[n_] := n! * SeriesCoefficient[Exp[-x ] / (1 - x), {x, 0, n}];
F[n_] := (Clear[v]; v[_] = 0; For[m = 4, m <= n, m++, v[m] = (m - 1)*v[m - 1] + 2*If[OddQ[m], (m - 1)*v[m - 2], (m - 2)*If[m == 4, 1, v[m - 4]]]]; v[n]);
d[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(2k)!/(2^k*k!), {k, 0, n}];
R[n_] := If[OddQ[n], 0, (n - 1)!*2/(n/2 - 1)!];
a[0] = 1; a[n_] := (F[n] + If[OddQ[n], 0, m = n/2; 2^m * sf[m] + 2*R[m] + 2*d[m]])/8;
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
-
\\ here sf is A000166, F is A003471, D is A053871, R(n) is A037224(2n).
sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}
F(n) = {my(v = vector(n)); for(n=4,length(v),v[n]=(n-1)*v[n-1]+2*if(n%2==1,(n-1)*v[n-2],(n-2)*if(n==4,1,v[n-4]))); v[n]}
D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n,k) * (2*k)!/(2^k*k!))}
R(n) = {if(n%2==1, 0, (n-1)!*2/(n/2-1)!)}
a(n) = {(F(n) + if(n%2==1, 0, my(m=n/2); 2^m * sf(m) + 2*R(m) + 2*D(m)))/8}
A370253
Number of deranged matchings of 2n people with partners (of either sex) such that at least one person is matched with their spouse.
Original entry on oeis.org
0, 1, 1, 7, 45, 401, 4355, 56127, 836353, 14144545, 267629139, 5601014255, 128455425593, 3203605245777, 86317343312395, 2498680706048191, 77336483434140705, 2548534969132415297, 89087730603300393443, 3292572900736818264015, 128281460895447809211529
Offset: 0
For n=0, there is no matching which has at least one person matched with their original partner.
For n=1, there are only 2 people, so there is only one way to match them and it is with their original partner.
For n=2, we have two couples, A0 with A1, and B0 with B1. Of the three ways to match them [(A0,A1),(B0,B1)], [(A0,B0),(A1,B1)] and [(A0,B1),(A1,B0)], only the first matching has a person matched up with their original partner.
Cf.
A001147 (total number of matchings for 2n people).
Cf.
A053871 (number of deranged matchings of 2n people with partners (of either sex) other than their spouse).
-
a:= proc(n) option remember; `if`(n<3, signum(n),
(4*n-7)*a(n-1)-2*(2*n^2-10*n+11)*a(n-2)-2*(n-2)*(2*n-5)*a(n-3))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Feb 14 2024
-
a[n_] := Sum[(-1)^(n-i+1)*Binomial[n, i]*(2i-1)!!, {i, 0, n-1}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 29 2024 *)
-
import math
A001147 = lambda i: math.factorial(2*i) // ( 2 ** i * math.factorial(i) )
A370253 = lambda n: int( sum( (-1)**(i+1) * math.comb(n,n-i) * A001147(n-i) for i in range(1,n+1) ) )
print( ", ".join( str(A370253(i)) for i in range(0,21) ) )
A297474
Number of maximal matchings in the n-cocktail party graph.
Original entry on oeis.org
1, 2, 14, 92, 844, 9304, 121288, 1822736, 31030928, 590248736, 12406395616, 285558273472, 7143371664064, 192972180052352, 5598713198048384, 173627942889668864, 5731684010612723968, 200669613102747214336, 7426773564495661485568, 289713958515451427511296
Offset: 1
-
Table[(-1)^(n + 1) (n HypergeometricPFQ[{1/2, 1 - n}, {}, 2] - HypergeometricPFQ[{1/2, -n}, {}, 2]), {n, 20}]
Table[-I (-1)^n (n HypergeometricU[1/2, n + 1/2, -1/2] - HypergeometricU[1/2, n + 3/2, -1/2])/Sqrt[2], {n, 20}]
-
\\ here b(n) is A053871.
b(n)={if(n<1, n==0, sum(k=0, n, (-1)^(n-k)*binomial(n,k)*(2*k)!/(2^k*k!)))}
a(n)=b(n) + n*b(n-1); \\ Andrew Howroyd, Dec 30 2017
A382134
Number of completely asymmetric matchings (not containing centered or coupled arcs) of [2n].
Original entry on oeis.org
1, 0, 0, 8, 48, 384, 4480, 59520, 897792, 15368192, 293769216, 6198589440, 143130972160, 3590253477888, 97214510235648, 2826205634330624, 87801981951344640, 2902989352269250560, 101776549707306237952, 3771425415371470405632, 147285455218020210180096
Offset: 0
A372260
Triangle read by rows: T(n, k) = (T(n-1, k-1) + T(n-1, k)) * 2 * n with initial values T(n, 0) = Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * A001147(i) and T(i, j) = 0 if j > i.
Original entry on oeis.org
1, 0, 2, 2, 8, 8, 8, 60, 96, 48, 60, 544, 1248, 1152, 384, 544, 6040, 17920, 24000, 15360, 3840, 6040, 79008, 287520, 503040, 472320, 230400, 46080, 79008, 1190672, 5131392, 11067840, 13655040, 9838080, 3870720, 645120, 1190672, 20314880, 101153024, 259187712, 395566080, 375889920, 219340800, 72253440, 10321920
Offset: 0
Triangle T(n, k) starts:
n\k : 0 1 2 3 4 5 6 7
====================================================================
0 : 1
1 : 0 2
2 : 2 8 8
3 : 8 60 96 48
4 : 60 544 1248 1152 384
5 : 544 6040 17920 24000 15360 3840
6 : 6040 79008 287520 503040 472320 230400 46080
7 : 79008 1190672 5131392 11067840 13655040 9838080 3870720 645120
etc.
-
T := proc(n, k) option remember; `if`(k > n, 0, `if`(k = n, 2^n * n!, `if`(k = 0, `if`(n < 2, 1 - n, (2*n - 2) * (T(n-1, k) + T(n-2, k))), (T(n-1, k-1) + T(n-1, k)) * 2*n))) end:
for n from 0 to 7 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 25 2024
-
T[n_,k_]:=n!SeriesCoefficient[(Exp[-t]/Sqrt[1 - 2*t])*(2*t/(1-2*t))^k,{t,0,n}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Apr 25 2024 *)
-
{ T(n, k) = if(k>n, 0, if(k==n, 2^n * n!, if(k==0, if(n<2, 1-n,
(2*n-2) * (T(n-1, k) + T(n-2, k))), (T(n-1, k-1) + T(n-1, k)) * 2*n))) }
-
memo = Map(); memoize(f, A[..]) =
{ my(res);
if(!mapisdefined(memo, [f, A], &res), res = call(f, A);
mapput(memo, [f, A], res)); res; }
T(n, k) =
{ if(k>n, 0, if(k==n, 2^n * n!, if(k==0, if(n<2, 1 - n,
(2 * n - 2) * (memoize(T, n-1, k) + memoize(T, n-2, k))),
(memoize(T, n-1, k-1) + memoize(T, n-1, k)) * 2 * n))); }
A382139
Number of matchings of [2n] with no coupled arcs.
Original entry on oeis.org
1, 1, 1, 9, 81, 705, 7665, 100905, 1524705, 26022465, 496042785, 10445342985, 240779831985, 6030718158465, 163087008669585, 4735950860666025, 146987669673669825, 4855606200012593025, 170101350767940617025, 6298861062893921346825, 245834199405298416337425
Offset: 0
Comments