cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A294774 a(n) = 2*n^2 + 2*n + 5.

Original entry on oeis.org

5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0

Views

Author

Bruno Berselli, Nov 08 2017

Keywords

Comments

This is the case k = 9 of 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 (similar sequences are listed in Crossrefs section). Note that:
2*( 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 ) - k = ( 2*n + (1-(-1)^k)/2 )^2. From this follows an alternative definition for the sequence: Numbers h such that 2*h - 9 is a square. Therefore, if a(n) is a square then its base is a term of A075841.

Crossrefs

1st diagonal of A154631, 3rd diagonal of A055096, 4th diagonal of A070216.
Second column of Mathar's array in A016813 (Comments section).
Subsequence of A001481, A001983, A004766, A020668, A046711 and A057653 (because a(n) = (n+2)^2 + (n-1)^2); A097268 (because it is also a(n) = (n^2+n+3)^2 - (n^2+n+2)^2); A047270; A243182 (for y=1).
Similar sequences (see the first comment): A161532 (k=-14), A181510 (k=-13), A152811 (k=-12), A222182 (k=-11), A271625 (k=-10), A139570 (k=-9), (-1)*A147973 (k=-8), A059993 (k=-7), A268581 (k=-6), A090288 (k=-5), A054000 (k=-4), A142463 or A132209 (k=-3), A056220 (k=-2), A046092 (k=-1), A001105 (k=0), A001844 (k=1), A058331 (k=2), A051890 (k=3), A271624 (k=4), A097080 (k=5), A093328 (k=6), A271649 (k=7), A255843 (k=8), this sequence (k=9).

Programs

  • Maple
    seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
  • Mathematica
    Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017

Formula

O.g.f.: (5 - 6*x + 5*x^2)/(1 - x)^3.
E.g.f.: (5 + 4*x + 2*x^2)*exp(x).
a(n) = a(-1-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 5*A000217(n+1) - 6*A000217(n) + 5*A000217(n-1).
n*a(n) - Sum_{j=0..n-1} a(j) = A002492(n) for n>0.
a(n) = Integral_{x=0..2n+4} |3-x| dx. - Pedro Caceres, Dec 29 2020

A304161 a(n) = 2*n^3 - 4*n^2 + 10*n - 2 (n>=1).

Original entry on oeis.org

6, 18, 46, 102, 198, 346, 558, 846, 1222, 1698, 2286, 2998, 3846, 4842, 5998, 7326, 8838, 10546, 12462, 14598, 16966, 19578, 22446, 25582, 28998, 32706, 36718, 41046, 45702, 50698, 56046, 61758, 67846, 74322, 81198, 88486, 96198, 104346, 112942, 121998
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

For n>=2, a(n) is the first Zagreb index of the graph KK_n, defined as 2 copies of the complete graph K_n, with one vertex from one copy joined to two vertices of the other copy (see the Stevanovic et al. reference, p. 396).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of KK_n is M(KK_n; x,y) = (n-2)^2*x^{n-1}*y^{n-1}+2*(n-2)*x^{n-1}*y^n + (n-1)*x^{n-1}*y^{n+1} + x^n*y^n +2*x^n*y^{n+1}.

Crossrefs

Programs

  • Mathematica
    Table[2n^3-4n^2+10n-2 ,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{6,18,46,102},50] (* Harvey P. Dale, Oct 17 2022 *)
  • PARI
    Vec(2*x*(3 - 3*x + 5*x^2 + x^3) / (1 - x)^4 + O(x^60)) \\ Colin Barker, May 09 2018

Formula

a(n) = A033431(n-1) + A054000(n+1). - Omar E. Pol, May 09 2018
From Colin Barker, May 09 2018: (Start)
G.f.: 2*x*(3 - 3*x + 5*x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A376243 Nonnegative integers N = x*y*z = x+y+z for some rational x, y, z.

Original entry on oeis.org

0, 6, 7, 9, 13, 14, 15, 16, 19
Offset: 1

Views

Author

M. F. Hasler, Sep 16 2024

Keywords

Comments

Obviously all of x, y and z must be nonzero for all solutions N > 0. For any N = x*y*z = x+y+z, one gets -N from (-x, -y, -z), so considering only N >= 0 is not a restriction. Either none or exactly two among x, y and z must be negative.
For given N, the problem amounts to finding fractions x and y such that x*y^2 + x*(x - N)*y + N = 0, which in turn corresponds to finding rational points on the elliptic curve Y^2 = X^3 + N^2*(X+4)^2 (with X = -4*N/x and Y = 4*N*D/x^2, where D^2 is the discriminant of the previous quadratic in y).
It appears that (for N > 0) we have a rational solution iff this elliptic curve has nonzero rank. (Is there any counterexample?) If so, the sequence goes (0, 6, 7, 9, 13, 14, 15, 16, 19, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 37, 38, 40, 43, 44, 45, 46, 48, 49, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 86, 87, ...)

Examples

			The first few terms correspond to the following solutions (|x| <= |y| <= |z|):
    N  |    x    |    y    |    z
  -----+---------+---------+---------
    0  |    0    |    0    |    0    (or any rational y = -z).
    6  |    1    |    2    |    3    (and also {25/21, 54/35, 49/15}).
    7  |   7/6   |   4/3   |   9/2
    9  |   1/2   |    4    |   9/2
   13  |  36/77  | 121/42  | 637/66
   14  |   1/3   |    9    |  14/3
   15  |   1/2   |   5/2   |   12
   16  |  -2/3   |  -4/3   |   18
   19  | 121/234 | 324/143 |3211/198
  ...
All terms of A054000 (2*n^2-2: 0, 6, 16, 30, 48, 70, 96, 126, 160, 198, ...) are in the sequence, as product and sum of the triple (2*n^2, 1/n - 1, -1/n - 1).
		

Crossrefs

Cf. A376241-A376242 for an enumeration of all possible solutions (not in the order of increasing N) using the Stern-Brocot sequence A002487.
A054000 (2*n^2-2) is a subsequence.

Programs

  • PARI
    select( {is_A376243(n)=!n||ellrank(ellinit([0,1,0,8,16]*n^2))}, [0..30]) \\ Assuming there's a rational solution iff the elliptic curve has rank > 0. - M. F. Hasler, Sep 23 2024

A091435 Array T(n,k) = n*(n+k), read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 4, 2, 0, 9, 6, 3, 0, 16, 12, 8, 4, 0, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 49, 42, 35, 28, 21, 14, 7, 0, 64, 56, 48, 40, 32, 24, 16, 8, 0, 81, 72, 63, 54, 45, 36, 27, 18, 9, 0, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, 121, 110, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0
Offset: 0

Views

Author

Ross La Haye, Mar 02 2004

Keywords

Examples

			Table begins
   0;
   1,  0;
   4,  2,  0;
   9,  6,  3,  0;
  16, 12,  8,  4,  0;
  25, 20, 15, 10,  5,  0;
  36, 30, 24, 18, 12,  6,  0;
  ...
a(5,3) = 40 because 5 * (5 + 3) = 5 * 8 = 40.
		

Crossrefs

Columns: a(n, 0) = A000290(n), a(n, 1) = A002378(n), a(n, 2) = A005563(n), a(n, 3) = A028552(n), a(n, 4) = A028347(n+2), a(n, 5) = A028557(n), a(n, 6) = A028560(n), a(n, 7) = A028563(n), a(n, 8) = A028566(n). Diagonals: a(n, n-4) = A054000(n-1), a(n, n-3) = A014107(n), a(n, n-2) = A046092(n-1), a(n, n-1) = A000384(n), a(n, n) = A001105(n), a(n, n+1) = A014105(n), a(n, n+2) = A046092(n), a(n, n+3) = A014106(n), a(n, n+4) = A054000(n+1), a(n, n+5) = A033537(n). Also note that the sums of the antidiagonals = A002411.

Programs

  • GAP
    Flat(List([0..11],j->List([0..j],i->j*(j-i)))); # Muniru A Asiru, Sep 11 2018
  • Maple
    seq(seq((j-i)*j,i=0..j),j=0..14);
  • Mathematica
    Table[# (# + k) &[m - k], {m, 0, 11}, {k, 0, m}] // Flatten (* Michael De Vlieger, Oct 15 2018 *)

Formula

G.f.: x*(1+x-2*x^2*y)/((1-x*y)^2*(1-x)^3). - Vladeta Jovovic, Mar 05 2004

Extensions

More terms from Emeric Deutsch, Mar 15 2004

A154030 Sequence defined by a(2*n) = 2*(n^2 + 2*n) and a(2*n-1) = (2*n)!/n!.

Original entry on oeis.org

0, 2, 6, 12, 16, 120, 30, 1680, 48, 30240, 70, 665280, 96, 17297280, 126, 518918400, 160, 17643225600, 198, 670442572800, 240, 28158588057600, 286, 1295295050649600, 336, 64764752532480000, 390, 3497296636753920000, 448
Offset: 0

Views

Author

Roger L. Bagula, Jan 04 2009

Keywords

Crossrefs

Programs

  • Magma
    [ n mod 2 eq 0 select 2*((n/2)^2 + n) else Round(Factorial(n+1)/Gamma((n+3)/2)): n in [0..30]]; // G. C. Greubel, Feb 08 2021
  • Mathematica
    Flatten[Table[{2*(n^2 - 1), (2*n)!/n!}, {n, 1, 20}]]
    Table[If[EvenQ[n], 2*((n/2)^2 + n), (n+1)!/((n+1)/2)!], {n, 0, 30}] (* G. C. Greubel, Feb 08 2021 *)
  • PARI
    a(n)=if(n%2, (n+1)!/((n+1)/2)!, 2*(n/2)^2 + 2*n) \\ Charles R Greathouse IV, Sep 01 2016
    
  • Sage
    def A154030(n):
        if (n%2==0): return 2*((n/2)^2 + n)
        else: return factorial(n+1)/factorial((n+1)/2)
    [A154030(n) for n in (0..30)] # G. C. Greubel, Feb 08 2021
    

Formula

a(2*n) = 2*(n^2 + 2*n).
a(2*n-1) = (2*n)!/n!.

Extensions

Edited by G. C. Greubel, Feb 08 2021

A199855 Inverse permutation to A210521.

Original entry on oeis.org

1, 4, 2, 5, 3, 6, 11, 7, 12, 8, 13, 9, 14, 10, 15, 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28, 37, 29, 38, 30, 39, 31, 40, 32, 41, 33, 42, 34, 43, 35, 44, 36, 45, 56, 46, 57, 47, 58, 48, 59, 49, 60, 50, 61, 51, 62, 52, 63, 53, 64, 54, 65, 55, 66, 79
Offset: 1

Views

Author

Boris Putievskiy, Feb 04 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). The order of the list:
T(1,1)=1;
T(2,1), T(2,2), T(1,2), T(1,3), T(3,1),
...
T(2,n-1), T(4,n-3), T(6,n-5), ..., T(n,1),
T(2,n), T(4,n-2), T(6,n-4), ..., T(n,2),
T(1,n), T(3,n-2), T(5,n-4), ..., T(n-1,2),
T(1,n+1), T(3,n-1), T(5,n-3), ..., T(n+1,1),
...
The order of the list elements of adjacent antidiagonals. Let m be a positive integer.
Movement by antidiagonal {T(1,2*m), T(2*m,1)} from T(2,2*m-1) to T(2*m,1) length of step is 2,
movement by antidiagonal {T(1,2*m+1), T(2*m+1,1)} from T(2,2*m) to T(2*m,2) length of step is 2,
movement by antidiagonal {T(1,2*m), T(2*m,1)} from T(1,2*m) to T(2*m-1,2) length of step is 2,
movement by antidiagonal {T(1,2*m+1), T(2*m+1,1)} from T(1,2*m+1) to T(2*m+1,1) length of step is 2.
Table contains:
row 1 is alternation of elements A001844 and A084849,
row 2 is alternation of elements A130883 and A058331,
row 3 is alternation of elements A051890 and A096376,
row 4 is alternation of elements A033816 and A005893,
row 6 is alternation of elements A100037 and A093328;
row 5 accommodates elements A097080 in odd places,
row 7 accommodates elements A137882 in odd places,
row 10 accommodates elements A100038 in odd places,
row 14 accommodates elements A100039 in odd places;
column 1 is A093005 and alternation of elements A000384 and A001105,
column 2 is alternation of elements A046092 and A014105,
column 3 is A105638 and alternation of elements A014106 and A056220,
column 4 is alternation of elements A142463 and A014107,
column 5 is alternation of elements A091823 and A054000,
column 6 is alternation of elements A090288 and |A168244|,
column 8 is alternation of elements A059993 and A033537;
column 7 accommodates elements A071355 in odd places,
column 9 accommodates elements |A147973| in even places,
column 10 accommodates elements A139570 in odd places,
column 13 accommodates elements A130861 in odd places.

Examples

			The start of the sequence as table:
   1,  4,  5,  11,  13,  22,  25,  37,  41,  56,  61, ...
   2,  3,  7,   9,  16,  19,  29,  33,  46,  51,  67, ...
   6, 12, 14,  23,  26,  38,  42,  57,  62,  80,  86, ...
   8, 10, 17,  20,  30,  34,  47,  52,  68,  74,  93, ...
  15, 24, 27,  39,  43,  58,  63,  81,  87, 108, 115, ...
  18, 21, 31,  35,  48,  53,  69,  75,  94, 101. 123, ...
  28, 40, 44,  59,  64,  82,  88, 109, 116, 140, 148, ...
  32, 36, 49,  54,  70,  76,  95, 102, 124, 132, 157, ...
  45, 60, 65,  83,  89, 110, 117, 141, 149, 176, 185, ...
  50, 55, 71,  77,  96, 103, 125, 133, 158, 167, 195, ...
  66, 84, 90, 111, 118, 142, 150, 177, 186, 216, 226, ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   4,  2;
   5,  3,  6;
  11,  7, 12,  8;
  13,  9, 14, 10, 15;
  22, 16, 23, 17, 24, 18;
  25, 19, 26, 20, 27, 21, 28;
  37, 29, 38, 30, 39, 31, 40, 32;
  41, 33, 42, 34, 43, 35, 44, 36, 45;
  56, 46, 57, 47, 58, 48, 59, 49, 60, 50;
  61, 51, 62, 52, 63, 53, 64, 54, 65, 55, 66;
  ...
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of  triangle array, located above.
Last  2*r-1 numbers are from the row number 2*r-1 of  triangle array, located above.
   1;
   4, 2, 5, 3, 6;
  11, 7,12, 8,13, 9,14,10,15;
  22,16,23,17,24,18,25,19,26,20,27,21,28;
  37,29,38,30,39,31,40,32,41,33,42,34,43,35,44,36,45;
  56,46,57,47,58,48,59,49,60,50,61,51,62,52,63,53,64,54,65,55,66;
  ...
Row number r contains permutation numbers 4*r-3 from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-3*r+2,2*r*r-5*r+4, 2*r*r-3*r+3, 2*r*r-5*r+5, 2*r*r-3*r+4, 2*r*r-5*r+6, ..., 2*r*r-3*r+1, 2*r*r-r.
...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=(2*j**2+(4*i-5)*j+2*i**2-3*i+2+(2+(-1)**j)*((1-(t+1)*(-1)**i)))/4

Formula

T(n,k) = (2*k^2+(4*n-5)*k+2*n^2-3*n+2+(2+(-1)^k)*((1-(k+n-1)*(-1)^i)))/4.
a(n) = (2*j^2+(4*i-5)*j+2*i^2-3*i+2+(2+(-1)^j)*((1-(t+1)*(-1)^i)))/4, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((sqrt(8*n-7) - 1)/2).

A221216 T(n,k) = ((n+k)^2-2*(n+k)+4-(3*n+k-2)*(-1)^(n+k))/2; n , k > 0, read by antidiagonals.

Original entry on oeis.org

1, 5, 6, 4, 3, 2, 12, 13, 14, 15, 11, 10, 9, 8, 7, 23, 24, 25, 26, 27, 28, 22, 21, 20, 19, 18, 17, 16, 38, 39, 40, 41, 42, 43, 44, 45, 37, 36, 35, 34, 33, 32, 31, 30, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 80
Offset: 1

Views

Author

Boris Putievskiy, Feb 22 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(3,1), T(2,2), T(1,3);
T(1,2), T(2,1);
. . .
T(2*m+1,1), T(2*m,2), T(2*m-1,3),...T(2,2*m), T(1,2*m+1);
T(1,2*m), T(2,2*m-1), T(3,2*m-2),...T(2*m-1,2),T(2*m,1);
. . .
First row contains antidiagonal {T(1,2*m+1), ... T(2*m+1,1)}, read upwards.
Second row contains antidiagonal {T(1,2*m), ... T(2*m,1)}, read downwards.

Examples

			The start of the sequence as table:
  1....5...4..12..11..23..22...
  6....3..13..10..24..21..39...
  2...14...9..25..20..40..35...
  15...8..26..19..41..34..60...
  7...27..18..42..33..61..52...
  28..17..43..32..62..51..85...
  16..44..31..63..50..86..73...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  5,6;
  4,3,2;
  12,13,14,15;
  11,10,9,8,7;
  23,24,25,26,27,28;
  22,21,20,19,18,17,16;
  . . .
Row number r consecutive contains r numbers.
If r is odd,  row is decreasing.
If r is even, row is increasing.
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-2*(t+2)+4-(3*i+j-2)*(-1)**t)/2

Formula

As table
T(n,k) = ((n+k)^2-2*(n+k)+4-(3*n+k-2)*(-1)^(n+k))/2.
As linear sequence
a(n) = (A003057(n)^2-2*A003057(n)+4-(3*A002260(n)+A004736(n)-2)*(-1)^A003056(n))/2; a(n) = ((t+2)^2-2*(t+2)+4-(i+3*j-2)*(-1)^t)/2,
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A221217 T(n,k) = ((n+k)^2-2*n+3-(n+k-1)*(1+2*(-1)^(n+k)))/2; n , k > 0, read by antidiagonals.

Original entry on oeis.org

1, 6, 5, 4, 3, 2, 15, 14, 13, 12, 11, 10, 9, 8, 7, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 91
Offset: 1

Views

Author

Boris Putievskiy, Feb 22 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(3,1), T(2,2), T(1,3);
T(2,1), T(1,2);
. . .
T(2*m+1,1), T(2*m,2), T(2*m-1,3),...T(1,2*m+1);
T(2*m,1), T(2*m-1,2), T(2*m-2,3),...T(1,2*m);
. . .
First row contains antidiagonal {T(1,2*m+1), ... T(2*m+1,1)}, read upwards.
Second row contains antidiagonal {T(1,2*m), ... T(2*m,1)}, read upwards.

Examples

			The start of the sequence as table:
  1....6...4..15..11..28..22...
  5....3..14..10..27..21..44...
  2...13...9..26..20..43..35...
  12...8..25..19..42..34..63...
  7...24..18..41..33..62..52...
  23..17..40..32..61..51..86...
  16..39..31..60..50..85..73...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  6,5;
  4,3,2;
  15,14,13,12;
  11,10,9,8,7;
  28,27,26,25,24,23;
  22,21,20,19,18,17,16;
  . . .
Row number r consecutive contains r numbers in decreasing order.
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-2*i+3-(t+1)*(1+2*(-1)**t))/2

Formula

As table
T(n,k) = ((n+k)^2-2*n+3-(n+k-1)*(1+2*(-1)^(n+k)))/2.
As linear sequence
a(n) = (A003057(n)^2-2*A002260(n)+3-A002024(n)*(1+2*(-1)^A003056(n)))/2;
a(n) = ((t+2)^2-2*i+3-(t+1)*(1+2*(-1)**t))/2, where i=n-t*(t+1)/2,
j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A302576 Numbers k such that k/10 + 1 is a square.

Original entry on oeis.org

-10, 0, 30, 80, 150, 240, 350, 480, 630, 800, 990, 1200, 1430, 1680, 1950, 2240, 2550, 2880, 3230, 3600, 3990, 4400, 4830, 5280, 5750, 6240, 6750, 7280, 7830, 8400, 8990, 9600, 10230, 10880, 11550, 12240, 12950, 13680, 14430, 15200, 15990, 16800, 17630, 18480, 19350, 20240
Offset: 1

Views

Author

Bruno Berselli, Apr 10 2018

Keywords

Comments

Equivalently, numbers k such that (k + 10)*10 is a square.
The positive terms belong to the fourth column of the array in A185781.

Crossrefs

After -10, subsequence of A174133 because a(n) = ((n-1)^2-1)*(3^2+1).
Similar lists of k for which k/j + 1 is a square: A067998 (j=1), A054000 (j=2), A067725 (j=3), A134582 (j=4), A067724 (j=5), A067726 (j=6), A067727 (j=7), second bisection of A067728 (j=8), A147651 (j=9), this sequence (j=10), A067705 (j=11), second bisection of A067707 (j=12).

Programs

  • GAP
    List([1..50], n -> 10*n*(n-2));
    
  • Julia
    [10*n*(n-2) for n in 1:50] |> println
    
  • Magma
    [10*n*(n-2): n in [1..50]];
  • Mathematica
    Table[10 n (n - 2), {n, 1, 50}]
  • Maxima
    makelist(10*n*(n-2), n, 1, 50);
    
  • PARI
    vector(50, n, nn; 10*n*(n-2))
    
  • Python
    [10*n*(n-2) for n in range(1, 50)]
    
  • Sage
    [10*n*(n-2) for n in (1..50)]
    

Formula

O.g.f.: -10*x*(1 - 3*x)/(1 - x)^3.
E.g.f.: -10*x*(1 - x)*exp(x).
a(n) = a(2-n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 10*n*(n - 2) = 10*A067998(n).
a(n) = A033583(n-1) - 10. - Altug Alkan, Apr 10 2018

A359329 Number of diagonals in a regular polygon with n sides not passing through the center.

Original entry on oeis.org

0, 0, 5, 6, 14, 16, 27, 30, 44, 48, 65, 70, 90, 96, 119, 126, 152, 160, 189, 198, 230, 240, 275, 286, 324, 336, 377, 390, 434, 448, 495, 510, 560, 576, 629, 646, 702, 720, 779, 798, 860, 880, 945, 966, 1034, 1056, 1127, 1150, 1224, 1248, 1325, 1350, 1430, 1456, 1539, 1566, 1652, 1680
Offset: 3

Views

Author

Luk De Clercq, Dec 26 2022

Keywords

Crossrefs

A014106 and A054000 interleaved.

Programs

  • Mathematica
    Table[(n*(n - 4 + BitGet[n, 0]))/2, {n, 3, 100}] (* Paolo Xausa, Oct 02 2024 *)
  • Python
    def A359329(n): return (n*(n-4)+n*(n&1))>>1 # Chai Wah Wu, Jan 23 2023

Formula

If n is odd, a(n) = (n^2 - 3*n)/2; if n is even, a(n) = (n^2 - 4*n)/2.
a(n) = A000096(n-3) - A142150(n-3).
G.f.: x^5*(5 + x - 2*x^2)/((1 - x)^3*(1 + x)^2). - Stefano Spezia, Jan 04 2023
Previous Showing 31-40 of 42 results. Next