A211357
Triangle read by rows: T(n,k) is the number of noncrossing partitions up to rotation of an n-set that contain k singleton blocks.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 2, 3, 2, 2, 0, 1, 5, 6, 9, 4, 3, 0, 1, 6, 15, 18, 15, 5, 3, 0, 1, 15, 36, 56, 42, 29, 7, 4, 0, 1, 28, 91, 144, 142, 84, 42, 10, 4, 0, 1, 67, 232, 419, 432, 322, 152, 66, 12, 5, 0, 1, 145, 603, 1160, 1365, 1080, 630, 252, 90, 15, 5, 0, 1
Offset: 0
From _Andrew Howroyd_, Nov 16 2017: (Start)
Triangle begins: (n >= 0, 0 <= k <= n)
1;
0, 1;
1, 0, 1;
1, 1, 0, 1;
2, 1, 2, 0, 1;
2, 3, 2, 2, 0, 1;
5, 6, 9, 4, 3, 0, 1;
6, 15, 18, 15, 5, 3, 0, 1;
15, 36, 56, 42, 29, 7, 4, 0, 1;
28, 91, 144, 142, 84, 42, 10, 4, 0, 1;
67, 232, 419, 432, 322, 152, 66, 12, 5, 0, 1;
(End)
Cf.
A091867 (noncrossing partitions of an n-set with k singleton blocks),
A211359 (up to rotations and reflections).
-
a91867[n_, k_] := If[k == n, 1, (Binomial[n + 1, k]/(n + 1)) Sum[Binomial[n + 1 - k, j] Binomial[n - k - j - 1, j - 1], {j, 1, (n - k)/2}]];
a2426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}];
a171128[n_, k_] := Binomial[n, k]*a2426[n - k];
T[0, 0] = 1;
T[n_, k_] := (1/n)*(a91867[n, k] - a171128[n, k] + Sum[EulerPhi[d]* a171128[n/d, k/d], {d, Divisors[GCD[n, k]]}]);
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
-
g(x,y) = {1/sqrt((1 - (1 + y)*x)^2 - 4*x^2) - 1}
S(n)={my(A=(1-sqrt(1-4*x/(1-(y-1)*x) + O(x^(n+2))))/(2*x)-1); Vec(1+intformal((A + sum(k=2, n, eulerphi(k)*g(x^k + O(x*x^n), y^k)))/x))}
my(v=S(10)); for(n=1, #v, my(p=v[n]); for(k=0, n-1, print1(polcoeff(p,k), ", ")); print) \\ Andrew Howroyd, Nov 16 2017
A054358
Number of unlabeled asymmetric 2-ary cacti having n polygons.
Original entry on oeis.org
1, 1, 0, 1, 2, 8, 18, 61, 170, 538, 1654, 5344, 17252, 57146, 190786, 646305, 2209050, 7626164, 26532732, 93013852, 328196780, 1165060170, 4158266282, 14915635376, 53745892932, 194477856048, 706436256598, 2575316698792, 9419568272632
Offset: 0
-
a[0] = 1; a[n_] := DivisorSum[n, MoebiusMu[n/#] Binomial[2#, #]&]/n - Binomial[2n, n]/(n+1);
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
-
a(n) = if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1)) \\ Andrew Howroyd, May 02 2018
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 7, 5, 8, 9, 14, 16, 10, 19, 17, 18, 11, 12, 15, 20, 21, 13, 22, 23, 37, 42, 24, 51, 44, 47, 25, 26, 38, 53, 56, 27, 60, 45, 46, 48, 49, 50, 28, 29, 30, 31, 40, 39, 43, 32, 52, 54, 55, 57, 58, 59, 33, 34, 35, 41, 61, 62, 63, 36, 64, 65, 107, 121, 66, 149
Offset: 0
Number of cycles:
A054357. Number of fixed points:
A046698. (In range [
A014137(n-1)..
A014138(n-1)] of this permutation, possibly shifted one term left or right).
A303874
Number of noncrossing partitions of an n-set up to rotation with all blocks having a prime number of elements.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 3, 5, 8, 17, 37, 71, 179, 366, 919, 2069, 5027, 12053, 29098, 71846, 175485, 437438, 1087122, 2723326, 6860525, 17301606, 43957596, 111748571, 285591775, 731432424, 1879009622, 4841510973, 12500324496, 32366232373, 83962263464, 218309244314
Offset: 0
-
\\ number of partitions with restricted block sizes
NCPartitionsModCyclic(v)={ my(n=#v);
my(p=serreverse(x/(1 + sum(k=1, #v, x^k*v[k])) + O(x^2*x^n) )/x);
my(vars=variables(p));
my(varpow(r,d)=substvec(r + O(x^(n\d+1)), vars, apply(t->t^d, vars)));
my(q=x*deriv(p)/p);
my(T=sum(k=1, #v, my(t=v[k]); if(t, x^k*t*sumdiv(k, d, eulerphi(d) * varpow(p,d)^(k/d))/k)));
T + 2 + intformal(sum(d=1,n,eulerphi(d)*varpow(q,d))/x) - p
}
Vec(NCPartitionsModCyclic(vector(40, k, isprime(k))))
A111276
Number of chiral non-crossing partition patterns of n points on a circle, divided by 2.
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 14, 60, 210, 728, 2442, 8252, 27716, 93924, 319964, 1098900, 3800928, 13244836, 46460738, 164015272, 582353976, 2078812492, 7457141650, 26871707908, 97236327900, 353213328024, 1287648322950, 4709765510884, 17279999438748, 63583033400968
Offset: 1
-
a[n_] := If[n < 6, 0, ((Binomial[2n, n]/(n+1) + DivisorSum[n, Binomial[2#, #] EulerPhi[n/#] Boole[# < n]&])/n - Binomial[n, Floor[n/2]])/2];
Array[a, 22] (* Jean-François Alcover, Feb 17 2019 *)
-
a(n) = (sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1) - binomial(n,n\2))/2 \\ Andrew Howroyd, Nov 19 2024
A211353
Refined triangle A211357: T(n,k) is the number of noncrossing partitions up to rotation of an n-set that are of type k (k-th integer partition, defined by A194602).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 4, 6, 3, 5, 1, 2, 1, 1, 1, 1, 3, 5, 10, 5, 15, 3, 5, 6, 3, 1, 3, 1, 1, 1, 1, 4, 7, 19, 10, 35, 7, 19, 21, 12, 4, 21, 7, 7, 1, 3, 4, 4, 1, 1, 1, 1, 1, 4, 10, 28, 14, 70, 14, 48, 56, 28, 10
Offset: 1
A135452
Number of different multisets of differences between ends of n non-intersecting chords joining 2n labeled points around a circle.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 20, 33, 71, 117, 242, 421, 877, 1468
Offset: 1
Arvind Ayyer, Dec 14 2007, definition corrected Jan 04 2007, Jan 07 2007
Comments