cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A060175 Square array A(n,k) = exponent of the largest power of k-th prime which divides n, read by falling antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Mar 14 2001

Keywords

Examples

			a(12,1) = 2 since 4 = 2^2 = p_1^2 divides 12 but 8 = 2^3 does not.
a(12,2) = 1 since 3 = p_2 divides 12 but 9 = 3^2 does not.
See also examples in A249344, which is transpose of this array.
The top-left corner of the array:
n\k | 1  2  3  4  5  6  7  8
----+------------------------
1   | 0, 0, 0, 0, 0, 0, 0, 0,
2   | 1, 0, 0, 0, 0, 0, 0, 0,
3   | 0, 1, 0, 0, 0, 0, 0, 0,
4   | 2, 0, 0, 0, 0, 0, 0, 0,
5   | 0, 0, 1, 0, 0, 0, 0, 0,
6   | 1, 1, 0, 0, 0, 0, 0, 0,
7   | 0, 0, 0, 1, 0, 0, 0, 0,
8   | 3, 0, 0, 0, 0, 0, 0, 0,
9   | 0, 2, 0, 0, 0, 0, 0, 0,
10  | 1, 0, 1, 0, 0, 0, 0, 0,
11  | 0, 0, 0, 0, 1, 0, 0, 0,
12  | 2, 1, 0, 0, 0, 0, 0, 0,
...
		

Crossrefs

Transpose: A249344.
Column 1: A007814.
Column 2: A007949.
Column 3: A112765.
Column 4: A214411.
Row sums: A001222.

Programs

  • Mathematica
    T[n_, k_] := IntegerExponent[n, Prime[k]];
    Table[T[n-k+1, k], {n, 1, 15}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 18 2019 *)
  • PARI
    a(n, k) = valuation(n, prime(k)); \\ Michel Marcus, Jun 24 2017
  • Python
    from sympy import prime
    def a(n, k):
        p=prime(n)
        i=z=0
        while p**i<=k:
            if k%(p**i)==0: z=i
            i+=1
        return z
    for n in range(1, 10): print([a(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 24 2017
    
  • Scheme
    (define (A060175 n) (A249344bi (A004736 n) (A002260 n)))
    (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1)))))))
    ;; Antti Karttunen, Oct 28 2014
    

Formula

A(n, k) = log(A060176(n, k))/log(A000040(k)) = k-th digit from right of A054841(n).

Extensions

Erroneous example corrected and more terms computed by Antti Karttunen, Oct 28 2014
Name clarified by Antti Karttunen, Jan 16 2025

A090882 Suppose n=(p1^e1)(p2^e2)... where p1,p2,... are the prime numbers and e1,e2,... are nonnegative integers. Then a(n) = e1 + (e2)*5 + (e3)*25 + (e4)*125 + ... + (ek)*(5^(k-1)) + ...

Original entry on oeis.org

0, 1, 5, 2, 25, 6, 125, 3, 10, 26, 625, 7, 3125, 126, 30, 4, 15625, 11, 78125, 27, 130, 626, 390625, 8, 50, 3126, 15, 127, 1953125, 31, 9765625, 5, 630, 15626, 150, 12, 48828125, 78126, 3130, 28, 244140625, 131, 1220703125, 627, 35, 390626, 6103515625, 9, 250
Offset: 1

Views

Author

Sam Alexander, Dec 12 2003

Keywords

Comments

Replace "5" with "x" and extend the definition of a to positive rationals and a becomes an isomorphism between positive rationals under multiplication and polynomials over Z under addition. This remark generalizes A001222, A048675 and A054841: evaluate said polynomial at x=1, x=2 and x=10, respectively.

References

  • Joseph J. Rotman, The Theory of Groups: An Introduction, 2nd ed. Boston: Allyn and Bacon, Inc. 1973. Page 9, problem 1.26.

Crossrefs

Programs

  • PARI
    A090882(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*5^(primepi(f[k, 1])-1)); }; \\ Antti Karttunen, Apr 28 2022

Extensions

More terms from Ray Chandler, Dec 20 2003

A090883 Write n as Product_{i=1..k} prime(i)^e_i, where prime(i) is the i-th prime number and e_i is a nonnegative integer. a(n) = Sum_{i=1..k} e_i*n^(i-1).

Original entry on oeis.org

0, 1, 3, 2, 25, 7, 343, 3, 18, 101, 14641, 14, 371293, 2745, 240, 4, 24137569, 37, 893871739, 402, 9282, 234257, 78310985281, 27, 1250, 11881377, 81, 21954, 14507145975869, 931, 819628286980801, 5, 1185954, 1544804417, 44100, 74
Offset: 1

Views

Author

Sam Alexander, Dec 12 2003

Keywords

Comments

In the definition, replace "e_i*n^(i-1)" with "e_i*x^(i-1)" for all i to define a function P:N+ -> N[x]. If we extend this definition to positive rationals by allowing negative e_i, P(.) becomes an isomorphism between positive rationals under multiplication and polynomials over Z under addition. We can use P to generalize A001222, A048675 and A054841: evaluate each term of the sequence of polynomials P(1), P(2), ... at x=1, x=2 and x=10, respectively. [Edited and corrected by Peter Munn, Aug 12 2022]

References

  • Joseph J. Rotman, The Theory of Groups: An Introduction, 2nd ed. Boston: Allyn and Bacon, Inc. 1973. Page 9, problem 1.26.

Crossrefs

The main diagonal of A104244 (A104245).

Programs

  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*n^(primepi(f[k,1])-1)); \\ Michel Marcus, Nov 01 2016

Extensions

Name edited by Peter Munn, Aug 12 2022

A090884 a(n) is the derivative of n via transport of structure from polynomials. Completely multiplicative with a(2) = 1, a(prime(i+1)) = prime(i)^i for i > 0.

Original entry on oeis.org

1, 1, 2, 1, 9, 2, 125, 1, 4, 9, 2401, 2, 161051, 125, 18, 1, 4826809, 4, 410338673, 9, 250, 2401, 16983563041, 2, 81, 161051, 8, 125, 1801152661463, 18, 420707233300201, 1, 4802, 4826809, 1125, 4, 25408476896404831, 410338673, 322102, 9
Offset: 1

Views

Author

Sam Alexander, Dec 12 2003

Keywords

Comments

Previous name: There exists an isomorphism from the positive rationals under multiplication to Z[x] under addition, defined by f(q) = e1 + (e2)x + (e3)(x^2) +...+ (ek)(x^(k-1)) + ... (where e_i is the exponent of the i-th prime in q's prime factorization) The a(n) above are calculated by a(n) = f^(-1)[d/dx f(n)] (In other words: differentiate n's image in Z[x] and return to Q).
With primes noted p_0 = 2, p_1 = 3, etc., let f be the function that maps n = Product_{i=0..d} p_i^e_i to P = Sum_{i=0..d} e_i*X^i; and let g be the inverse function of f. a(n) is by definition g(P') = g((f(n))'). - Luc Rousseau, Aug 06 2018

Examples

			504 = 2^3 * 3^2 * 7 is mapped to polynomial 3+2X+X^3, whose derivative is 2+3X^2, which is mapped to 2^2 * 5^3 = 500. Then, a(504) = 500. - _Luc Rousseau_, Aug 06 2018
		

References

  • Joseph J. Rotman, The Theory of Groups: An Introduction, 2nd ed. Boston: Allyn and Bacon, Inc. 1973. Page 9, problem 1.26.

Crossrefs

Polynomial multiplication using the same isomorphism: A297845.

Programs

  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 1, precprime(p-1)^(e*primepi(p-1))))} \\ Andrew Howroyd, Jul 31 2018

Extensions

More terms from Ray Chandler, Dec 20 2003
New name from Peter Munn, Aug 10 2022 using existing formula (Andrew Howroyd, Jul 31 2018) and introductory comment.

A090881 Suppose n=(p1^e1)(p2^e2)... where p1,p2,... are the prime numbers and e1,e2,... are nonnegative integers. Then a(n) = e1 + (e2)*4 + (e3)*16 + (e4)*64 + ... + (ek)*(4^(k-1)) + ...

Original entry on oeis.org

0, 1, 4, 2, 16, 5, 64, 3, 8, 17, 256, 6, 1024, 65, 20, 4, 4096, 9, 16384, 18, 68, 257, 65536, 7, 32, 1025, 12, 66, 262144, 21, 1048576, 5, 260, 4097, 80, 10, 4194304, 16385, 1028, 19, 16777216, 69, 67108864, 258, 24, 65537, 268435456, 8, 128, 33, 4100, 1026
Offset: 1

Views

Author

Sam Alexander, Dec 12 2003

Keywords

Comments

Replace "4" with "x" and extend the definition of a to positive rationals and a becomes an isomorphism between positive rationals under multiplication and polynomials over Z under addition. This remark generalizes A001222, A048675 and A054841: evaluate said polynomial at x=1, x=2 and x=10, respectively.

References

  • Joseph J. Rotman, The Theory of Groups: An Introduction, 2nd ed. Boston: Allyn and Bacon, Inc. 1973. Page 9, problem 1.26.

Crossrefs

Extensions

More terms from Ray Chandler, Dec 20 2003

A126131 a(n) = number of divisors of n which equal any d(k) for 1 <= k <= n, where d(k) is the number of positive divisors of k.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 3, 1, 5, 1, 4, 2, 2, 2, 6, 1, 2, 2, 5, 1, 4, 1, 3, 4, 2, 1, 6, 1, 4, 2, 3, 1, 5, 2, 4, 2, 2, 1, 8, 1, 2, 3, 4, 2, 4, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 4, 1, 6, 3, 2, 1, 7, 2, 2, 2, 4, 1, 7, 2, 3, 2, 2, 2, 7, 1, 3, 3, 5, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Leroy Quet, Dec 18 2006

Keywords

Examples

			The number of divisors of the integers 1 through 10 form the sequence 1,2,2,3,2,4,2,4,3,4. The divisors of 10 are 1,2,5,10. The divisors of 10 which occur in the sequence of d(k)'s, 1 <= k <= 10, are 1 and 2. So a(10) = 2.
From _Michael De Vlieger_, Oct 10 2017: (Start)
Records and their indices in a(n).
i = index in table
n = index of record r in this sequence
k = index of n in A002182.
MN(n) = rev(A054841(n)) = concatenation of multiplicities of
        prime divisors of n, e.g., MN(60) = "211".
r = record in this sequence.
.
   i       n    k   MN(n)   r
  ----------------------------
   1       1    1   0       1
   2       2    2   1       2
   3       6    4   11      3
   4      12    5   21      5
   5      24    6   31      6
   6      60    9   211     8
   7     120   10   311     9
   8     180   11   221    11
   9     240   12   411    12
  10     360   13   321    14
  11     720   14   421    16
  12    1260   16   2211   18
  13    1680   17   4111   19
  14    2520   18   3211   21
  15    3360        5111   22
  16    5040   19   4211   26
  17    7560   20   3311   28
  18   10080   21   5211   30
  19   15120   22   4311   33
  20   20160   23   6211   34
  21   25200   24   4221   35
  22   30240        5311   38
  23   50400   27   5221   40
  24   60480        6311   42
  25   75600        4321   43
  (End)
		

Crossrefs

Cf. A126132.

Programs

  • Mathematica
    f[n_] :=Length@ Select[Divisors[n], MemberQ[Table[Length@ Divisors[k], {k, n}], # ] &];Table[f[n], {n, 105}] (* Ray Chandler, Dec 20 2006 *)
    Block[{nn = 105, s}, s = DivisorSigma[0, Range@ nn]; Table[DivisorSum[n, 1 &, MemberQ[Take[s, n], #] &], {n, nn}]] (* Michael De Vlieger, Oct 10 2017 *)
  • PARI
    a(n) = #setintersect(divisors(n), Set(vector(n, k, numdiv(k)))); \\ Michel Marcus, Oct 11 2017

Extensions

Extended by Ray Chandler, Dec 20 2006

A127668 Concatenated indices of primes in prime factorization of n.

Original entry on oeis.org

1, 2, 11, 3, 21, 4, 111, 22, 31, 5, 211, 6, 41, 32, 1111, 7, 221, 8, 311, 42, 51, 9, 2111, 33, 61, 222, 411, 10, 321, 11, 11111, 52, 71, 43, 2211, 12, 81, 62, 3111, 13, 421, 14, 511, 322, 91, 15, 21111, 44, 331, 72, 611, 16, 2221, 53, 4111, 82, 101, 17, 3211, 18, 111
Offset: 2

Views

Author

Wolfdieter Lang Jan 23 2007

Keywords

Comments

For each n>=2 the indices i of primes p(i), i>=1, in the prime number decomposition of n are ordered from right to left.
The mapping n->a(n) is from {2,3,...} onto {1,2,3,...}=N but not injective; hence not invertible.
There are at most pa(k):=A000041(k) (partition numbers) different numbers which map to any a(n) with k digits. 10 and 12 are the smallest numbers for which this is not equality; 10 because 1,0 is not a partition, and 12 because 1,2 lists partition parts in the wrong order.
For the invertible map onto lists of prime number indices see the W. Lang link; also A112798.

Examples

			111=a(2*2*2)=a(31*2)=a(607). 111 has k=3 digits, hence pa(3)=3 different numbers are mapped to it.
a(5)=3 because 5=p(3). a(4)=11 because 4=2*2=p(1)*p(1). Also a(31)=11 because p(11)=31.
		

Crossrefs

For numbers with no prime divisor > 23, the sum of digits gives A056239(n), n>=2.
For numbers with no prime divisor > 23, the length of the digits gives A001222(n), n>=2, (number of prime divisors of n).
The number of numbers mapped to a(n) gives A127669.
Cf. A054841(n), n>=2: exponents in prime decomposition of n.
See A112798 for another version of this data.

Formula

If n=p_1^(n_1) p_2^(n_2)...p_k^(n_k), with n_j>=0, then a(n) = n_k times k followed by n_{k-1} times (k-1)... followed by n_1 times 1.

Extensions

Edited by Franklin T. Adams-Watters, May 21 2014

A273258 Write the distinct prime divisors p of n in the (PrimePi(p) - 1)-th place, ignoring multiplicity. Decode the resulting number after first reversing the code, ignoring any leading zeros.

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 2, 2, 10, 2, 6, 2, 14, 6, 2, 2, 6, 2, 10, 10, 22, 2, 6, 2, 26, 2, 14, 2, 30, 2, 2, 14, 34, 6, 6, 2, 38, 22, 10, 2, 70, 2, 22, 6, 46, 2, 6, 2, 10, 26, 26, 2, 6, 10, 14, 34, 58, 2, 30, 2, 62, 10, 2, 14, 154, 2, 34, 38, 42, 2, 6, 2, 74, 6, 38, 6, 286, 2, 10, 2, 82, 2, 70, 22, 86
Offset: 1

Views

Author

Michael De Vlieger, Aug 28 2016

Keywords

Comments

Encode n with the function f(n) = noting the distinct prime divisors p of n by writing "1" in the (PrimePi(n) - 1)-th place, e.g, f(6) = f(12) = "11". This function is akin to A054841(n) except we don't note the multiplicity e of p in n, rather merely note "1" if e > 0.
This sequence decodes f(n) by reversing the digits.
If we decode f(n) without reversal, we have A007947(n), since f(n) sets any multiplicity e > 1 of prime divisor p of n to 1.
All terms except a(1) are of the form 2x with x odd. a(1) = 1, since f(1) = "0" and stands unaffected in reversal and decoding, and any zeros to the right of all 1's are lost in reversal. Thus f(15) = "110" reversed becomes "011" -> "11" decoded equals 2 * 3 = 6. Because we lose leading zeros, we always have 1 in position 1, which decoded is interpreted as the factor 2.
a(p) for p prime = 2, since primes are written via f(p) as 1 in the (PrimePi(p)-1)-th place. There is only one 1 in this number (similar to a perfect power of ten decimally) and when it is reversed, the number loses all leading zeros to become "1" -> 2. This also applies to prime powers p^e, since e is rendered as 1 by f(p^e), i.e., f(p^e) = f(p).

Examples

			a(3) = 2 since f(3) = "10" reversed becomes "01", loses leading zeros to become "1" -> 2.
a(6) = a(12) = "11" reversed stays the same -> 2 * 3 = 6.
a(15) = "110" reversed becomes "011", loses leading zeros to become "11" -> 6.
a(42) = "1101" reversed becomes "1011" -> 70 (a(70) = 42).
		

Crossrefs

Cf. A007947, A019565, A030101, A054841 (analogous encoding algorithm), A069799, A087207, A137502, A276379, A293448 (a bijective variant of this sequence).

Programs

  • Mathematica
    Table[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> 1 &, f]]@ FactorInteger@ #] &@ n, {n, 86}]
  • Scheme
    (define (A273258 n) (A019565 (A030101 (A087207 n)))) ;; Antti Karttunen, Jun 18 2017

Formula

a(n) = A019565(A030101(A087207(n))). - Antti Karttunen, Jun 18 2017
For all n, a(A039956(n)) = A293448(A039956(n)). - Antti Karttunen, Nov 21 2017

A276379 Write a "1" for each distinct prime divisor p of n in the (pi(p) - 1)-th place, ignoring multiplicity.

Original entry on oeis.org

0, 1, 10, 1, 100, 11, 1000, 1, 10, 101, 10000, 11, 100000, 1001, 110, 1, 1000000, 11, 10000000, 101, 1010, 10001, 100000000, 11, 100, 100001, 10, 1001, 1000000000, 111, 10000000000, 1, 10010, 1000001, 1100, 11, 100000000000, 10000001, 100010, 101, 1000000000000, 1011, 10000000000000, 10001, 110
Offset: 1

Views

Author

Michael De Vlieger, Sep 02 2016

Keywords

Comments

a(n) notes the distinct prime divisors p of n by writing "1" in the (pi(n)-1)-th place. Zeros hold the places of primes q less than the greatest prime divisor p that do not divide n. Thus a(n) consists of 1's and 0's like a binary number where each bit value, instead of representing 2^k, represents prime(k + 1).
a(n) = A054841(n) with all nonzero digits converted to 1's.
a(n) = a(A007947(n)), that is, a number n shares a value of a(n) with the largest squarefree divisor A007947(n). Thus a(18) = a(6) = 11.
a(p) = 1 in the leftmost place followed by (pi(p)-1) zeros.
This function is akin to A054841(n) except we don't note the multiplicity e of p in n, rather merely note "1" if e > 0.
Unlike A054841(1024) = 10, there are no overflows in a(n) into the next place that encodes prime(p+1) due to "carry". 1024 = 2^10, thus a(1024) = a(2^e) = 1, with e >= 1 = 1.

Examples

			a(1) = 0 since 1 is the empty product. a(0) is undefined.
a(6) = a(12) = 11, since 6 and 12 are products of the 1st and 2nd primes (i.e., 2 and 3). Thus we write 1's in the corresponding places. Any number n that is the product only of powers e >= 1 of 2 and 3 (e.g., 24, 96, 144, etc.) has a(n) = 11.
a(42) = 1011, since the prime divisors of 42 are 2, 3 and 7. Any number n that is the product only of powers e >= 1 of all of 2, 3 and 7 has a(n) = 1011.
a(70) = 1101, since its prime divisors are 2, 5 and 7.
		

Crossrefs

Cf. A027748, A054841 (write multiplicity instead of 1 in the (pi(p)-1)th place), A079067 (reverse 0's and 1's in a(n) and convert to decimal), A087207 (a(n) interpreted as a binary number), A273258 (a(n) reversed and converted to decimal).
Sequence A087207 shown in base-2.

Programs

  • Maple
    a:= n-> add(10^numtheory[pi](i[1]), i=ifactors(n)[2])/10:
    seq(a(n), n=1..53);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    f[n_] := If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> 1 &, k]]@ FactorInteger@ n]; Table[FromDigits@ Reverse@ f@ n, {n, 45}] (* or *)
    FromDigits[IntegerDigits[#, 2]] & /@ Table[Floor@ Total[2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)], {n, 45}] (* latter program after Jean-François Alcover at A087207 *)

Formula

a(n) = A054841(A007947(n)) = A007088(A087207(n)). - Antti Karttunen, Jun 18 2017
G.f.: Sum_{k>=1} 10^(k-1) * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 10 2020

A288813 Irregular triangle read by rows: T(m, k) is the list of squarefree numbers A002110(m) < t < 2*A002110(m) such that A001221(t) = m.

Original entry on oeis.org

3, 10, 42, 330, 390, 2730, 3570, 3990, 4290, 39270, 43890, 46410, 51870, 53130, 570570, 690690, 746130, 870870, 881790, 903210, 930930, 1009470, 11741730, 13123110, 14804790, 15825810, 16546530, 17160990, 17687670, 18888870, 281291010, 300690390, 340510170
Offset: 1

Views

Author

Michael De Vlieger, Jun 24 2017

Keywords

Comments

a(n) = terms t of row m of A288784 such that A002110(m) < t < 2*A002110(m).
The only odd term is 3; the only other term not ending in 10, 30, 70, or 90 in decimal is 42.
All terms t in row m have A001221(t) = m and at least one prime q coprime to t such that q < A006530(t).
Consider "tier" m and primorial p_m# = A002110(m), let "distension" i = pi(A006530(T(m, k))) - m and let "depth" j = m - pi(A053669(T(m, k))) + 1. Distension is the difference in the index of gpf(T(m, k)) and pi(m), while depth is the difference between the index of the least prime totative of T(m, k) and pi(m) + 1. We can calculate the maximum distension i given m and j via i_max = A020900(m - j + 1) - m - j + 1. This enables us to use permutations of 0 and 1 values in the notation A054841 and produce a(n) with some efficiency.
The most efficient method of generating a(n) is via f(x) = A287352(x), i.e., subtracting 1 from all values in row x of A287352. We use a pointer variable to direct increment on f(p_m#) = a constant array of m 1's, until we have exhausted producing terms p_m# < t < 2*p_m#. This enables the generation of T(m, k) for 1 <= m <= 100.

Examples

			Triangle begins:
n     a(n)
1:       3
2:      10
3:      42
4:     330     390
5:    2730    3570    3990    4290
6:   39270   43890   46410   51870   53130
7:  570570  690690  746130  870870  881790  903210  930930  1009470
       ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[P, Select[Range[P + 1, 2 P - 1], And[SquareFreeQ@ #, PrimeOmega@ # == n] &]]@ Product[Prime@ i, {i, n}], {n, 7}] // Flatten (* Michael De Vlieger, Jun 24 2017 *)
    f[n_] := Block[{P = Product[Prime@ i, {i, n}], lim, k = 1, c, w = ConstantArray[1, n]}, lim = 2 P; Sort@ Reap[Do[w = If[k == 1, MapAt[# + 1 &, w, -k], Join[Drop[MapAt[# + 1 &, w, -k], -k + 1], ConstantArray[1, k - 1]]]; c = Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ w]; If[c < lim, Sow[c]; k = 1, If[k == n, Break[], k++]], {i, Infinity}] ][[-1, 1]] ]; Array[f, 9] // Flatten (* Michael De Vlieger, Jun 28 2017, faster *)
  • PARI
    primo(n) = prod(i=1, n, prime(i));
    row(n) = my(vrow = []); for (j=primo(n)+1, 2*primo(n)-1, if (issquarefree(j) && (omega(j)==n), vrow = concat(vrow, j))); vrow;
    tabf(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Jun 29 2017
Previous Showing 11-20 of 28 results. Next