cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A306014 Numbers k such that A055228(k)^2 - A055228(k) is a multiple of k, where A055228(k) is ceiling(sqrt(k!)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 28, 29, 30, 42, 46, 50, 52, 99, 134, 148, 165, 205, 245, 249, 315, 390, 441, 461, 525, 560, 763, 962, 1596, 1666, 1716, 1847, 1854, 1860, 3515, 4501, 5179, 6850, 7345, 7867, 8940, 9491, 9523, 15688, 19988, 23574, 23956
Offset: 1

Views

Author

Ivan Stoykov, Jun 17 2018

Keywords

Examples

			For k=6, A055228(6) = ceiling(sqrt(6!)) = 27, and 27^2-27 = 702, which is a multiple of 6.
		

References

  • Hazewinkel, Michiel, ed. (2001) [1994], Gamma Function, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4

Crossrefs

Programs

  • Mathematica
    Select[Range[4600],Divisible[Ceiling[Sqrt[#!]]^2-Ceiling[Sqrt[#!]],#]&] (* Harvey P. Dale, Mar 02 2023 *)
  • PARI
    default(realprecision,10^5); for(n=1,10^4, if( Mod( ceil(sqrt(n!)) - ceil(sqrt(n!))^2 , n) == 0, print1(n,", "))); \\ Joerg Arndt, Jun 17 2018

Extensions

Terms > 99 from Joerg Arndt, Jun 17 2018

A068869 Smallest number k such that n! + k is a square.

Original entry on oeis.org

0, 2, 3, 1, 1, 9, 1, 81, 729, 225, 324, 39169, 82944, 176400, 215296, 3444736, 26167684, 114349225, 255004929, 1158920361, 11638526761, 42128246889, 191052974116, 97216010329, 2430400258225, 1553580508516, 4666092737476, 565986718738441, 2137864362693921
Offset: 1

Views

Author

Amarnath Murthy, Mar 13 2002

Keywords

Comments

Observation: for n < 2000, only for n = 1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16 is a(n) a square (see A360210).
According to my conjecture that n! + n^2 != m^2 for n >= 1, m >= 0 (see A004664), for all terms: a(n) != n^2. - Alexander R. Povolotsky, Oct 06 2008
There are two cases: a(n) > sqrt(n!) in A182203 and a(n) < sqrt(n!) in A182204. - Artur Jasinski, Apr 13 2012

Examples

			a(6) = 9 as 6! + 9 = 729 is a square.
		

Crossrefs

Programs

  • Mathematica
    Table[ Ceiling[ Sqrt[n! ]]^2 - n!, {n, 1, 28}]
  • PARI
    A068869(n)=(sqrtint(n!-1)+1)^2-n!  \\ M. F. Hasler, Apr 01 2012
    
  • Python
    from math import factorial, isqrt
    def a(n): return (isqrt((f:=factorial(n))-1)+1)**2 - f
    print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Jan 30 2023

Formula

a(n) = A055228(n)^2 - n! = ceiling(sqrt(n!))^2 - n! = A048761(n!) - n!.
a(n) <= A038202(n)^2, with equality for the n listed in the first comment. - M. F. Hasler, Apr 01 2012

Extensions

More terms from Vladeta Jovovic, Mar 21 2002
Edited by Robert G. Wilson v and N. J. A. Sloane, Mar 22 2002

A214080 a(n) = (floor(sqrt(n)))!

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 24, 24, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 50, LOOP(IF( = -1, RETURN y), y := ADJOIN(FLOOR(SQRT(n))!, y), n := n - 1))
    
  • Magma
    [Factorial(Floor(Sqrt(n))): n in [0..60]]; // Vincenzo Librandi, Feb 13 2013
    
  • Mathematica
    Table[Floor[Sqrt[n]]!, {n, 0, 100}] (* T. D. Noe, Dec 23 2012 *)
  • PARI
    a(n) = floor(sqrt(n))!; \\ Altug Alkan, Jan 11 2016

Formula

Sum_{n>=0} 1/a(n) = 3*e. - Amiram Eldar, Aug 15 2022
a(n) = A000142(A000196(n)). - Michel Marcus, Aug 15 2022

A214083 a(n) = floor(n!^(1/3)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 17, 34, 71, 153, 341, 782, 1839, 4434, 10935, 27555, 70852, 185686, 495486, 1344956, 3710632, 10397338, 29568648, 85290741, 249391641, 738821756, 2216465268, 6730493989, 20678209929, 64252006059, 201840008711, 640802084315
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 35, LOOP(IF(n = -1, RETURN y), y := ADJOIN(FLOOR(n!^(1/3)), y), n := n - 1))
    
  • Magma
    [Floor(Factorial(n)^(1/3)): n in [0..40]]; // Vincenzo Librandi, Feb 08 2013
    
  • Mathematica
    Table[Floor[n!^(1/3)], {n, 0, 60}] (* Vincenzo Librandi, Feb 08 2013 *)
  • PARI
    a(n) = sqrtnint(n!,3); \\ Michel Marcus, Jan 11 2016

A214078 a(n) = (ceiling (sqrt(n)))!.

Original entry on oeis.org

1, 1, 2, 2, 2, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 120, 120, 120, 120, 120, 120, 120, 120, 120, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 40320, 40320, 40320
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 50, LOOP(IF(n = -1, RETURN y), y := ADJOIN(CEILING(SQRT(n))!, y), n := n - 1))
    
  • Magma
    [Factorial(Ceiling (Sqrt(n))): n in [0..50]]; // Vincenzo Librandi, Feb 13 2013
    
  • Mathematica
    Table[Ceiling[Sqrt[n]]!, {n, 0, 50}] (* T. D. Noe, Dec 23 2012 *)
  • PARI
    a(n) = ceil(sqrt(n))!; \\ Altug Alkan, Jan 11 2016
    
  • Python
    from math import factorial, isqrt
    def A214078(n): return factorial(1+isqrt(n-1)) if n else 1 # Chai Wah Wu, Jul 28 2022

Formula

a(n) = A000142(A003059(n)). - Michel Marcus, Jul 28 2022
Sum_{n>=0} 1/a(n) = e + 2. - Amiram Eldar, Aug 15 2022

A214079 a(n) = ceiling( n^(1/3) )!.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 120, 120, 120, 120, 120
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], x := 70, LOOP(IF(x = -1, RETURN y), y := ADJOIN(CEILING(x^(1/3))!, y), x := x - 1))
    
  • Magma
    [Factorial(Ceiling(n^(1/3))): n in [0..80]]; // Vincenzo Librandi, Feb 13 2013
    
  • Mathematica
    Table[Ceiling[n^(1/3)]!, {n, 0, 100}] (* T. D. Noe, Dec 23 2012 *)
    Ceiling[Surd[Range[0,70],3]]! (* Harvey P. Dale, Nov 19 2022 *)
  • PARI
    a(n) = ceil(n^(1/3))! \\ Altug Alkan, Jan 11 2016

Formula

Sum_{n>=0} 1/a(n) = 4*e. - Amiram Eldar, Aug 15 2022
a(n) = A000142(A134914(n)). - Michel Marcus, Aug 15 2022

A214081 a(n) = floor( n^(1/3) )!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 70, LOOP(IF(n = -1, RETURN y), y := ADJOIN(FLOOR(n^(1/3))!, y), n := n - 1))
    
  • Magma
    [Factorial(Floor(n^(1/3))): n in [0..80]]; // Vincenzo Librandi, Feb 13 2013
    
  • Mathematica
    Table[Floor[n^(1/3)]!, {n, 0, 100}] (* T. D. Noe, Dec 23 2012 *)
    Floor[CubeRoot[Range[0,90]]]! (* Harvey P. Dale, Jan 15 2024 *)
  • PARI
    a(n) = floor(n^(1/3))!; \\ Altug Alkan, Jan 11 2016

Formula

Sum_{n>=0} 1/a(n) = 10*e. - Amiram Eldar, Aug 15 2022
a(n) = A000142(A048766(n)). - Michel Marcus, Aug 15 2022

A214049 Least m>0 such that n! <= m^3.

Original entry on oeis.org

1, 2, 2, 3, 5, 9, 18, 35, 72, 154, 342, 783, 1840, 4435, 10936, 27556, 70853, 185687, 495487, 1344957, 3710633, 10397339, 29568649, 85290742, 249391642, 738821757, 2216465269, 6730493990, 20678209930, 64252006060, 201840008712, 640802084316, 2055394684174
Offset: 1

Views

Author

Clark Kimberling, Jul 18 2012

Keywords

Examples

			a(4) = 3 because 2^3 < 4! <= 3^3.
		

Crossrefs

Cf. A055228.

Programs

  • Mathematica
    Table[Ceiling[n!^(1/3)], {n,1,40}]

A308852 Minimum number k such that the k-th tetrahedral number is not smaller than n!.

Original entry on oeis.org

1, 2, 3, 5, 8, 16, 31, 62, 129, 279, 621, 1421, 3343, 8057, 19870, 50071, 128747, 337414, 900358, 2443947, 6742667, 18893218, 53729800, 154983562, 453174686, 1342528227, 4027584682, 12230119228, 37574801086, 116753643340, 366767636286, 1164414663338, 3734900007009
Offset: 1

Views

Author

Keywords

Comments

More formally, a(n) is the minimum element of the set of positive integers k such that the k-th tetrahedral number is not smaller than the n-th factorial.
Open problem: what is the cardinality of the set of numbers that are simultaneously a tetrahedral number and a factorial number? For example, 1 and 120 belong to this set.

Examples

			The minimum tetrahedral number not smaller than 4! is 35 (i.e., the 5th tetrahedral number), so a(4) = 5.
The minimum tetrahedral number not smaller (equal, in fact) than 5! is 120 (i.e., the 8th tetrahedral number), so a(5) = 8.
		

Crossrefs

Cf. A000142 (factorial numbers), A000292 (tetrahedral numbers).
Cf. A055228 (for n^2), A214049 (for n^3), A214448 (for n^4).

Programs

  • Mathematica
    Floor[(6 Range[33]!)^(1/3)] (* Giovanni Resta, Jul 30 2019 *)
  • PARI
    a(n) = {my(k=1); while (k*(k+1)*(k+2)/6 < n!, k++); k;} \\ Michel Marcus, Jun 28 2019

Formula

a(n) = ceiling((sqrt(3) * sqrt(243*(n!)^2 - 1) + 27*n!)^(1/3) / 3^(2/3) + 1/(3^(1/3) * (sqrt(3) * sqrt(243*(n!)^2 - 1) + 27*n!)^(1/3)) - 1). - Daniel Suteu, Jun 30 2019
a(n) = floor((6*n!)^(1/3)). - Giovanni Resta, Jul 30 2019

Extensions

a(26)-a(33) from Daniel Suteu, Jun 30 2019

A074188 Smallest power (>=2) >= n!.

Original entry on oeis.org

1, 4, 8, 25, 121, 729, 5041, 40401, 363609, 3629025, 39917124, 479040769, 6227103744, 87178467600, 1307674583296, 20922793332736, 355687454263684, 6402373820077225, 121645100663836929, 2432902009335560361
Offset: 1

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Examples

			a(3) = 8 = 2^3 > 6=3!.
		

Crossrefs

Cf. A074187.
Cf. A055228. It seems that a(n)=A055228(n)^2 for n>3.

Extensions

More terms from Hugo Pfoertner, Jul 20 2004
Showing 1-10 of 12 results. Next