cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A369016 Triangle read by rows: T(n, k) = binomial(n - 1, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k - 1).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 6, 2, 0, 0, 48, 18, 12, 0, 0, 500, 192, 144, 108, 0, 0, 6480, 2500, 1920, 1620, 1280, 0, 0, 100842, 38880, 30000, 25920, 23040, 18750, 0, 0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0
Offset: 0

Views

Author

Peter Luschny, Jan 12 2024

Keywords

Examples

			Triangle starts:
  [0] [0]
  [1] [0,       0]
  [2] [0,       1,      0]
  [3] [0,       6,      2,      0]
  [4] [0,      48,     18,     12,      0]
  [5] [0,     500,    192,    144,    108,      0]
  [6] [0,    6480,   2500,   1920,   1620,   1280,      0]
  [7] [0,  100842,  38880,  30000,  25920,  23040,  18750,      0]
  [8] [0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0]
		

Crossrefs

A368849, A368982 and this sequence are alternative sum representation for A001864 with different normalizations.
T(n, k) = A368849(n, k) / n for n >= 1.
T(n, 1) = A053506(n) for n >= 1.
T(n, n - 1) = A055897(n - 1) for n >= 2.
Sum_{k=0..n} T(n, k) = A000435(n) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) = A368981(n) / n for n >= 1.

Programs

  • Maple
    T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1):
    seq(seq(T(n, k), k = 0..n), n=0..9);
  • Mathematica
    A369016[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k-1); Table[A369016[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
  • SageMath
    def T(n, k): return binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1)
    for n in range(0, 9): print([T(n, k) for k in range(n + 1)])

Formula

T = B066320 - A369017 (where B066320 = A066320 after adding a 0-column to the left and then setting offset to (0, 0)).

A066320 Triangle read by rows: T(n, k) = binomial(n, k)*k^k*(n-k)^(n-k-1) k=0..n-1.

Original entry on oeis.org

1, 2, 2, 9, 6, 12, 64, 36, 48, 108, 625, 320, 360, 540, 1280, 7776, 3750, 3840, 4860, 7680, 18750, 117649, 54432, 52500, 60480, 80640, 131250, 326592, 2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344, 43046721
Offset: 1

Views

Author

Christian G. Bower, Dec 13 2001

Keywords

Examples

			Triangle starts:
  [1][      1]
  [2][      2,      2]
  [3][      9,      6,     12]
  [4][     64,     36,     48,    108]
  [5][    625,    320,    360,    540,    1280]
  [6][   7776,   3750,   3840,   4860,    7680,   18750]
  [7][ 117649,  54432,  52500,  60480,   80640,  131250,  326592]
  [8][2097152, 941192, 870912, 945000, 1146880, 1575000, 2612736, 6588344]
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 68 (2.1.43).

Crossrefs

T = n * A185390 after proper alignment of offsets.
Columns 1, 2: A000169, A055541.
Main diagonal: A055897.
Row sums give A000312.

Programs

  • Julia
    # Assuming offset (n=1, k=1).
    T(n, k) = binomial(n-1, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k-1)
    for n in 1:9 (println([n], [T(n, k) for k in 1:n])) end
    # Peter Luschny, Jan 12 2024

Formula

E.g.f.: -LambertW(-y)/(1+LambertW(-x*y)). - Vladeta Jovovic, Jan 26 2006
T(n, k) = n*binomial(n-1, k-1)*(k-1)^(k-1)*(n-k+1)^(n-k-1) assuming offset (1, 1). - Peter Luschny, Jan 12 2024

A350297 Triangle read by rows: T(n,k) = n!*(n-1)^k/k!.

Original entry on oeis.org

1, 1, 0, 2, 2, 1, 6, 12, 12, 8, 24, 72, 108, 108, 81, 120, 480, 960, 1280, 1280, 1024, 720, 3600, 9000, 15000, 18750, 18750, 15625, 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936, 40320, 282240, 987840, 2304960, 4033680, 5647152, 6588344, 6588344, 5764801
Offset: 0

Views

Author

Robert B Fowler, Dec 23 2021

Keywords

Comments

Rows n >= 2 are coefficients in a double summation power series for the integral of x^(1/x), and the integral of its inverse function y^(y^(y^(y^(...)))). See A350358.

Examples

			Triangle T(n,k) begins:
  -----------------------------------------------------------------
   n\k     0      1      2       3       4       5       6       7
  -----------------------------------------------------------------
   0  |    1,
   1  |    1,     0,
   2  |    2,     2,     1,
   3  |    6,    12,    12,      8,
   4  |   24,    72,   108,    108,     81,
   5  |  120,   480,   960,   1280,   1280,   1024,
   6  |  720,  3600,  9000,  15000,  18750,  18750,  15625,
   7  | 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936.
  ...
		

Crossrefs

Cf. A000142 (first column), A062119 (second column), A065440 (main diagonal), A055897 (subdiagonal), A217701 (row sums).

Programs

  • Maple
    T := (n, k) -> (n!/k!)*(n - 1)^k:
    seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Dec 24 2021
  • Mathematica
    T[1, 0] := 1; T[n_, k_] := n!*(n - 1)^k/k!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 24 2021 *)

Formula

T(n, k) = binomial(n, k)*A350269(n, k). - Peter Luschny, Dec 25 2021
T(n+1, k) = A061711(n) * (n+1) / A350149(n, k). - Robert B Fowler, Jan 11 2022

A225723 Triangular array read by rows: T(n,k) is the number of size k components in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 3, 12, 9, 17, 108, 72, 68, 142, 1280, 810, 680, 710, 1569, 18750, 11520, 9180, 8520, 9414, 21576, 326592, 196875, 152320, 134190, 131796, 151032, 355081, 6588344, 3919104, 2975000, 2544640, 2372328, 2416512, 2840648, 6805296
Offset: 1

Views

Author

Geoffrey Critzer, May 13 2013

Keywords

Comments

T(n,1) = n*(n-1)^(n-1) = A055897(n).
Row sums = A190314.
T(n,n) = A001865(n).
Sum_{k=1..n} T(n,k)*k = n^(n+1).

Examples

			Triangle T(n,k) begins:
       1;
       2,      3;
      12,      9,     17;
     108,     72,     68,    142;
    1280,    810,    680,    710,   1569;
   18750,  11520,   9180,   8520,   9414,  21576;
  326592, 196875, 152320, 134190, 131796, 151032, 355081;
  ...
		

Crossrefs

Cf. A225213.

Programs

  • Maple
    b:= n-> n!*add(n^(n-k-1)/(n-k)!, k=1..n):
    T:= (n, k)-> binomial(n,k)*b(k)*(n-k)^(n-k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, May 13 2013
  • Mathematica
    nn = 8; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy =
    Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}];
    Map[Select[#, # > 0 &] &,
      Drop[Range[0, nn]! CoefficientList[
         Series[Log[1/(1 - txy)]/(1 - tx), {x, 0, nn}], {x, y}],
       1]] // Grid

Formula

E.g.f.: log(1/(1 - A(x*y)))/(1 - A(x)) where A(x) is the e.g.f. for A000169.
T(n,k) = C(n,k)*A001865(k)*A000312(n-k). - Alois P. Heinz, May 13 2013

A322406 a(n) = n + n*n^n.

Original entry on oeis.org

2, 10, 84, 1028, 15630, 279942, 5764808, 134217736, 3486784410, 100000000010, 3138428376732, 106993205379084, 3937376385699302, 155568095557812238, 6568408355712890640, 295147905179352825872, 14063084452067724991026, 708235345355337676357650, 37589973457545958193355620
Offset: 1

Views

Author

Ivan Stoykov, Dec 07 2018

Keywords

Comments

All terms are produced by successively applying the three basic operations: exponentiation, multiplication and addition.

Examples

			a(3) = 3 + 3*3^3 = 3 + 3*27 = 8 + 81 = 84.
		

Crossrefs

Equals 2 * A108398.

Programs

Formula

E.g.f.: exp(x) * x - LambertW(-x)/(1 + LambertW(-x))^3. - Vaclav Kotesovec, Dec 20 2018

Extensions

a(12)-a(19) from Stefano Spezia, Dec 07 2018

A353122 Numbers k such that k^k*(k+1) + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 186, 198, 8390
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 24 2022

Keywords

Comments

Corresponding primes start 2, 3, 13, 109, 326593, 3874204891, ...
a(9) > 6000. - Jon E. Schoenfield, Jun 05 2022
a(10) > 18000. - Michael S. Branicky, Aug 08 2024

Examples

			9 is in the sequence because 9^9*(9+1) + 1 = 3874204891, which is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(n^n*(n+1) + 1)];
    
  • Mathematica
    Join[{0}, Select[Range[200], PrimeQ[#^#*(# + 1) + 1] &]] (* Amiram Eldar, Apr 25 2022 *)
  • PARI
    isok(k) = ispseudoprime(k^k*(k+1) + 1); \\ Michel Marcus, May 16 2022

Extensions

a(9) from Michael S. Branicky, Dec 22 2023
Previous Showing 11-16 of 16 results.