cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 66 results. Next

A212331 a(n) = 5*n*(n+5)/2.

Original entry on oeis.org

0, 15, 35, 60, 90, 125, 165, 210, 260, 315, 375, 440, 510, 585, 665, 750, 840, 935, 1035, 1140, 1250, 1365, 1485, 1610, 1740, 1875, 2015, 2160, 2310, 2465, 2625, 2790, 2960, 3135, 3315, 3500, 3690, 3885, 4085, 4290, 4500, 4715, 4935, 5160, 5390, 5625, 5865
Offset: 0

Views

Author

Bruno Berselli, May 30 2012

Keywords

Comments

Numbers of the form n*t(n+5,h)-(n+5)*t(n,h), where t(k,h) = k*(k+2*h+1)/2 for any h. Likewise:
A000217(n) = n*t(n+1,h)-(n+1)*t(n,h),
A005563(n) = n*t(n+2,h)-(n+2)*t(n,h),
A140091(n) = n*t(n+3,h)-(n+3)*t(n,h),
A067728(n) = n*t(n+4,h)-(n+4)*t(n,h) (n>0),
A140681(n) = n*t(n+6,h)-(n+6)*t(n,h).
This is the case r=7 in the formula:
u(r,n) = (P(r, P(n+r, r+6)) - P(n+r, P(r, r+6))) / ((r+5)*(r+6)/2)^2, where P(s, m) is the m-th s-gonal number.
Also, a(k) is a square for k = (5/2)*(A078986(n)-1).
Sum of reciprocals of a(n), for n>0: 137/750.
Also, numbers h such that 8*h/5+25 is a square.
The table given below as example gives the dimensions D(h, n) of the irreducible SU(3) multiplets (h,n). See the triangle A098737 with offset 0, and the comments there, also with a link and the Coleman reference. - Wolfdieter Lang, Dec 18 2020

Examples

			From the first and second comment derives the following table:
----------------------------------------------------------------
h \ n | 0   1    2    3    4    5    6    7    8    9    10
------|---------------------------------------------------------
0     | 0,  1,   3,   6,  10,  15,  21,  28,  36,  45,   55, ...  (A000217)
1     | 0,  3,   8,  15,  24,  35,  48,  63,  80,  99,  120, ...  (A005563)
2     | 0,  6,  15,  27,  42,  60,  81, 105, 132, 162,  195, ...  (A140091)
3     | 0, 10,  24,  42,  64,  90, 120, 154, 192, 234,  280, ...  (A067728)
4     | 0, 15,  35,  60,  90, 125, 165, 210, 260, 315,  375, ...  (A212331)
5     | 0, 21,  48,  81, 120, 165, 216, 273, 336, 405,  480, ...  (A140681)
6     | 0, 28,  63, 105, 154, 210, 273, 343, 420, 504,  595, ...
7     | 0, 36,  80, 132, 192, 260, 336, 420, 512, 612,  720, ...
8     | 0, 45,  99, 162, 234, 315, 405, 504, 612, 729,  855, ...
9     | 0, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, ...
with the formula n*(h+1)*(h+n+1)/2. See also A098737.
		

Crossrefs

Programs

  • Magma
    [5*n*(n+5)/2: n in [0..46]];
    
  • Mathematica
    Table[(5/2) n (n + 5), {n, 0, 46}]
  • PARI
    a(n)=5*n*(n+5)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 5*x*(3-2*x)/(1-x)^3.
a(n) = a(-n-5) = 5*A055998(n).
E.g.f.: (5/2)*x*(x + 6)*exp(x). - G. C. Greubel, Jul 21 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/25 - 47/750. - Amiram Eldar, Feb 26 2022

Extensions

Extended by Bruno Berselli, Aug 05 2015

A350248 Triangle read by rows: T(n,k) is the number of noncrossing partitions of an n-set into k blocks of size 3 or more, n >= 0, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 3, 0, 1, 7, 0, 1, 12, 0, 1, 18, 12, 0, 1, 25, 45, 0, 1, 33, 110, 0, 1, 42, 220, 55, 0, 1, 52, 390, 286, 0, 1, 63, 637, 910, 0, 1, 75, 980, 2275, 273, 0, 1, 88, 1440, 4900, 1820, 0, 1, 102, 2040, 9520, 7140, 0, 1, 117, 2805, 17136, 21420, 1428
Offset: 0

Views

Author

Andrew Howroyd and Janaka Rodrigo, Dec 21 2021

Keywords

Examples

			Triangle begins:
  1;
  0;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1,   3;
  0, 1,   7;
  0, 1,  12;
  0, 1,  18,   12;
  0, 1,  25,   45;
  0, 1,  33,  110;
  0, 1,  42,  220,   55;
  0, 1,  52,  390,  286;
  0, 1,  63,  637,  910;
  0, 1,  75,  980, 2275,  273;
  0, 1,  88, 1440, 4900, 1820;
  0, 1, 102, 2040, 9520, 7140;
  ...
		

Crossrefs

Columns k=2..5 are A055998, A350116, A350286, A350303.
Row sums are A114997.
Cf. A001263 (blocks of any size), A108263 (blocks of size 2 or more).

Programs

  • PARI
    T(n)={my(p=1+O(x^3)); for(i=1, n\3, p=1+y*(x*p)^3/(1-x*p)); [Vecrev(t)| t<-Vec(p + O(x*x^n))]}
    {my(A=T(12)); for(i=1, #A, print(A[i]))}
    
  • PARI
    T(n,k) = if(n==0 || k>n\3, k==0, binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1)) \\ Andrew Howroyd, Dec 31 2021

Formula

G.f.: A(x,y) satisfies A(x,y) = 1 + y*(x*A(x,y))^3/(1 - x*A(x,y)).
T(n,k) = binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1) for n > 0.

A133709 Triangle read by rows: T(m,l) = number of labeled covers of size l of a finite set of m unlabeled elements (m >= 1, 1 <= l <= 2^m - 1).

Original entry on oeis.org

1, 1, 3, 3, 1, 7, 35, 140, 420, 840, 840, 1, 12, 131, 1435, 15225, 150570, 1351770, 10810800, 75675600, 454053600, 2270268000, 9081072000, 27243216000, 54486432000, 54486432000, 1, 18, 347, 7693, 185031, 4568046, 111793710, 2661422400
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Examples

			Triangle begins:
1
1 3 3
1 7 35 140 420 840 840
1 12 131 1435 15225 150570 1351770
		

Crossrefs

Columns are given by A055998, A133710, A133711, A133712.

Programs

  • Maple
    A133709 := proc(m,l)
            option remember;
            if l = 1 then
                    1;
            else
                    add((-1)^i*binomial(l,i)*binomial(2^(l-i)+m-2,m),i=0..l-1)
                    - add(combinat[stirling2](l,i)*procname(m,i),i=1..l-1) ;
            end if;
    end proc:
    seq(seq(A133709(m,l),l=1..2^m-1),m=1..5) ; # R. J. Mathar, Nov 23 2011
  • Mathematica
    T[m_, l_] := T[m, l] = If[l == 1, 1, Sum[(-1)^i Binomial[l, i] Binomial[ 2^(l-i)+m-2, m], {i, 0, l-1}] - Sum[StirlingS2[l, i] T[m, i], {i, 1, l-1} ] ];
    Table[T[m, l], {m, 1, 5}, {l, 1, 2^m-1}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)

Formula

Burger and van Vuuren give an explicit formula.

A009056 Numbers >= 3.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

Same as Pisot sequences E(3,4), P(3,4), T(3,4). See A008776 for definitions of Pisot sequences.
Non-Fermat-exponents, positive integers n such that there are no solutions in positive integers of the equation a^n + b^n = c^n. - Tanya Khovanova, Jul 09 2011
Sums of twin primes. - Charles R Greathouse IV, Jun 21 2012

Crossrefs

Programs

Formula

a(n) = n + 2.
From R. J. Mathar, May 26 2008: (Start)
O.g.f.: x*(3-2*x)/(1-x)^2.
a(n) = A009005(n-1), n > 2. (End)
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(x + 2) - 2.
a(n) = 2*a(n-1) - a(n-2) for n > 2.
a(n) = A055998(n) - A055998(n-1) = A020739(n-1)/2. (End)

A085771 Triangle read by rows. T(n, k) = A059438(n, k) for 1 <= k <= n, and T(n, 0) = n^0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 7, 3, 1, 0, 71, 32, 12, 4, 1, 0, 461, 177, 58, 18, 5, 1, 0, 3447, 1142, 327, 92, 25, 6, 1, 0, 29093, 8411, 2109, 531, 135, 33, 7, 1, 0, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1, 0, 2829325, 642581, 125316, 24892, 5226, 1146, 252, 52, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Jul 22 2003

Keywords

Comments

The convolution triangle of A003319, the number of irreducible permutations. - Peter Luschny, Oct 09 2022

Examples

			Triangle starts:
[0] [1]
[1] [0,      1]
[2] [0,      1,     1]
[3] [0,      3,     2,     1]
[4] [0,     13,     7,     3,    1]
[5] [0,     71,    32,    12,    4,   1]
[6] [0,    461,   177,    58,   18,   5,   1]
[7] [0,   3447,  1142,   327,   92,  25,   6,  1]
[8] [0,  29093,  8411,  2109,  531, 135,  33,  7, 1]
[9] [0, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1]
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14).

Crossrefs

T(2*n, n) = A308650(n).
Variants: A059439, A263484 (row reversed).

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, A003319); # Peter Luschny, Oct 09 2022
  • SageMath
    # Using function delehamdelta from A084938.
    def A085771_triangle(n) :
        a = [0, 1] + [(i + 3) // 2 for i in range(1, n-1)]
        b = [0^i for i in range(n)]
        return delehamdelta(a, b)
    A085771_triangle(9) # Peter Luschny, Sep 10 2022

Formula

Let f(x) = Sum_{n>=0} n!*x^n, g(x) = 1 - 1/f(x). Then g(x) is the g.f. of the second column, A003319.
Triangle T(n, k) read by rows, given by [0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938.
G.f.: 1/(1 - xy/(1 - x/(1 - 2x/(1 - 2x/(1 - 3x/(1 - 3x/(1 - 4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009

A165157 Zero followed by partial sums of A133622.

Original entry on oeis.org

0, 1, 3, 4, 7, 8, 12, 13, 18, 19, 25, 26, 33, 34, 42, 43, 52, 53, 63, 64, 75, 76, 88, 89, 102, 103, 117, 118, 133, 134, 150, 151, 168, 169, 187, 188, 207, 208, 228, 229, 250, 251, 273, 274, 297, 298, 322, 323, 348, 349, 375, 376, 403, 404, 432, 433, 462, 463, 493, 494, 525
Offset: 0

Views

Author

Jaroslav Krizek, Sep 05 2009

Keywords

Comments

A133622 is a toothed sequence.
Interleaving of A055998 and A034856.

Examples

			From _Stefano Spezia_, Jul 10 2020: (Start)
Illustration of the initial terms for n > 0:
o    o      o      o         o        o
     o o    o o    o o       o o      o o
            o      o         o        o
                   o o o     o o o    o o o
                             o        o
                                      o o o o
(1)  (3)   (4)    (7)       (8)      (12)
(End)
		

Crossrefs

Equals -1+A101881.
a(n) = A117142(n+2)-2 = A055802(n+6)-3 = A114220(n+5)-3 = A134519(n+3)-3.

Programs

  • Haskell
    a165157 n = a165157_list !! n
    a165157_list = scanl (+) 0 a133622_list
    -- Reinhard Zumkeller, Feb 20 2015
  • Magma
    m:=60; T:=[ 1+(1+(-1)^n)*n/4: n in [1..m] ]; [0] cat [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..m] ]; // Klaus Brockhaus, Sep 06 2009
    
  • Magma
    [ n le 2 select n-1 else n le 4 select n else 2*Self(n-2)-Self(n-4)+1: n in [1..61] ]; // Klaus Brockhaus, Sep 06 2009
    

Formula

a(0) = 0, a(2*n) = a(2*n-1) + n + 1, a(2*n+1) = a(2*n) + 1.
a(n) = (n^2+10*n)/8 if n is even, a(n) = (n^2+8*n-1)/8 if n is odd.
a(2*k) = A055998(k) = k*(k+5)/2; a(2*k+1) = A034856(k+1) = k*(k+5)/2+1.
a(n) = 2*a(n-2)-a(n-4)+1 for n > 3; a(0)=0, a(1)=1, a(2)=3, a(3)=4. - Klaus Brockhaus, Sep 06 2009
a(n) = (2*n*(n+9)-1+(2*n+1)*(-1)^n)/16. - Klaus Brockhaus, Sep 06 2009
a(n) = n+binomial(1+floor(n/2),2). - Mircea Merca, Feb 18 2012
G.f.: x*(1+2*x-x^2-x^3)/((1-x)^3*(1+x)^2). - Klaus Brockhaus, Sep 06 2009
From Stefano Spezia, Jul 10 2020: (Start)
E.g.f.: (x*(9 + x)*cosh(x) + (-1 + 11*x + x^2)*sinh(x))/8.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. (End)

Extensions

Edited and extended by Klaus Brockhaus, Sep 06 2009

A196842 Table of the elementary symmetric functions a_k(1,2,4,5,...,n+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 14, 8, 1, 12, 49, 78, 40, 1, 18, 121, 372, 508, 240, 1, 25, 247, 1219, 3112, 3796, 1680, 1, 33, 447, 3195, 12864, 28692, 32048, 13440, 1, 42, 744, 7218, 41619, 144468, 290276, 301872, 120960, 1, 52, 1164, 14658, 113799, 560658, 1734956, 3204632, 3139680, 1209600
Offset: 0

Views

Author

Wolfdieter Lang, Oct 24 2011

Keywords

Comments

For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x[1]=1, x[2]=2, and x[j]=j+1 for j=3,...,n. This is the triangle S_3(n,k), n>=0, k=0..n. The first three rows coincide with those of triangle A094638.

Examples

			n\k   0    1    2     3      4      5     6       7  ...
0:    1
1:    1    1
2:    1    3    2
3:    1    7   14     8
4:    1   12   49    78     40
5:    1   18  121   372    508    240
6:    1   25  247  1219   3112   3796   1680
7:    1   33  447  3195  12864  28692  32048  13440
...
a(1,0) = a_0(1):= 1, a(1,1) = a_1(1)= 1.
a(3,2) = a_2(1,2,4) = 1*2 + 1*4 + 2*4 = 14.
a(3,2) = 1*|s(5,3)| - 3*|s(5,4)| + 9*|s(5,5)| = 1*35-3*10+9*1 = 14.
		

Crossrefs

Cf. A094638, A145324,|A123319|, A196841, A055998 (column k=1), A002301 (diagonal), A277132 (subdiagonal).

Programs

  • Maple
    A196842 := proc(n,k)
        if n = 1 and k =1 then
            1 ;
        else
            add( abs( combinat[stirling1](n+2,n+2-k+m))*(-3)^m,m=0..k) ;
        end if;
    end proc: # R. J. Mathar, Oct 01 2016
  • Mathematica
    a[n_, k_] := If[n == 1 && k == 1, 1, Sum[(-3)^m Abs[StirlingS1[n + 2, n + 2 - k + m]], {m, 0, k}]];
    Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2023, after R. J. Mathar *)

Formula

a(n,k) = a_k(1,2,..,n) if 0<=n<3, and a_k(1,2,4,5,...,n+1) if n>=3, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n=3, with the Stirling numbers of the first kind s(n,m)=A048994(n,m).

A209293 Inverse permutation of A185180.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 8, 9, 7, 10, 13, 12, 14, 11, 15, 18, 19, 17, 20, 16, 21, 25, 24, 26, 23, 27, 22, 28, 32, 33, 31, 34, 30, 35, 29, 36, 41, 40, 42, 39, 43, 38, 44, 37, 45, 50, 51, 49, 52, 48, 53, 47, 54, 46, 55, 61, 60, 62, 59, 63, 58, 64, 57, 65, 56, 66, 72, 73, 71, 74, 70, 75, 69, 76, 68, 77, 67
Offset: 1

Views

Author

Boris Putievskiy, Jan 16 2013

Keywords

Comments

Permutation of the natural numbers. a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k) by diagonals. The order of the list
if n is odd - T(n-1,2),T(n-3,4),...,T(2,n-1),T(1,n),T(3,n-2),...T(n,1).
if n is even - T(n-1,2),T(n-3,4),...,T(3,n-2),T(1,n),T(2,n-1),...T(n,1).
Table T(n,k) contains:
Column number 1 A000217,
column number 2 A000124,
column number 3 A000096,
column number 4 A152948,
column number 5 A034856,
column number 6 A152950,
column number 7 A055998.
Row number 1 A000982,
row number 2 A097063.

Examples

			The start of the sequence as table:
  1....2...5...8..13..18...25...32...41...
  3....4...9..12..19..24...33...40...51...
  6....7..14..17..26..31...42...49...62...
  10..11..20..23..34..39...52...59...74...
  15..16..27..30..43..48...63...70...87...
  21..22..35..38..53..58...75...82..101...
  28..29..44..47..64..69...88...95..116...
  36..37..54..57..76..81..102..109..132...
  45..46..65..68..89..94..117..124..149...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  2,3;
  5,4,6;
  8,9,7,10;
  13,12,14,11,15;
  18,19,17,20,16,21;
  25,24,26,23,27,22,28;
  32,33,31,34,30,35,29,36;
  41,40,42,39,43,38,44,37,45;
  . . .
Row number r contains permutation from r numbers:
if r is odd  ceiling(r^2/2), ceiling(r^2/2)+1, ceiling(r^2/2)-1, ceiling(r^2/2)+2, ceiling(r^2/2)-2,...r*(r+1)/2;
if r is even ceiling(r^2/2), ceiling(r^2/2)-1, ceiling(r^2/2)+1, ceiling(r^2/2)-2, ceiling(r^2/2)+2,...r*(r+1)/2;
		

Crossrefs

Programs

  • Mathematica
    max = 10; row[n_] := Table[Ceiling[(n + k - 1)^2/2] + If[OddQ[k], 1, -1]*Floor[n/2], {k, 1, max}]; t = Table[row[n], {n, 1, max}]; Table[t[[n - k + 1, k]], {n, 1, max}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 17 2013 *)
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    m1=int((i+j)/2)+int(i/2)*(-1)**(i+t+1)
    m2=int((i+j+1)/2)+int(i/2)*(-1)**(i+t)
    m=(m1+m2-1)*(m1+m2-2)/2+m1

Formula

As table T(n,k) read by antidiagonals
T(n,k) = n*n/2+4*(floor((k-1)/2)+1)*n+ceiling((k-1)^2/2), n,k > 0.
As linear sequence
a(n) = (m1+m2-1)*(m1+m2-2)/2+m1, where
m1 = int((i+j)/2)+int(i/2)*(-1)^(i+t+1),
m2 = int((i+j+1)/2)+int(i/2)*(-1)^(i+t),
t = int((math.sqrt(8*n-7) - 1)/ 2),
i = n-t*(t+1)/2,
j = (t*t+3*t+4)/2-n.

A024191 [ (3rd elementary symmetric function of 3,4,...,n+4)/(3+4+...+n+4) ].

Original entry on oeis.org

5, 19, 47, 95, 170, 280, 434, 642, 915, 1265, 1705, 2249, 2912, 3710, 4660, 5780, 7089, 8607, 10355, 12355, 14630, 17204, 20102, 23350, 26975, 31005, 35469, 40397, 45820, 51770, 58280, 65384, 73117, 81515, 90615, 100455, 111074, 122512, 134810, 148010
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A115127.
Partial sums of A005586.

Programs

  • Mathematica
    Table[n(n+1)(n^2+13n+46)/24,{n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{5,19,47,95,170},40] (* Harvey P. Dale, Apr 28 2014 *)
    CoefficientList[Series[(5 - 6 x + 2 x^2)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 28 2014 *)
  • PARI
    a(n) = n*(n+1)*(n^2+13*n+46)/24 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n)=A115127(n+2, 3), n>=2.
a(n) = n*(n+1)*(n^2+13n+46)/24 =a(n-1)+A005586(n). - Henry Bottomley, Oct 25 2001
G.f.: x*(5-6*x+2*x^2)/(1-x)^5.
a(n) = floor(A024184(n)/A055998(n+2)). - R. J. Mathar, Sep 15 2009
a(1)=5, a(2)=19, a(3)=47, a(4)=95, a(5)=170, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Apr 28 2014

A111106 Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 7, 3, 1, 0, 105, 36, 12, 4, 1, 0, 945, 249, 64, 18, 5, 1, 0, 10395, 2190, 441, 100, 25, 6, 1, 0, 135135, 23535, 3807, 691, 145, 33, 7, 1, 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 13 2005, Dec 20 2008

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, given by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Rows begin:
  1;
  0,       1;
  0,       1,      1;
  0,       3,      2,     1;
  0,      15,      7,     3,    1;
  0,     105,     36,    12,    4,    1;
  0,     945,    249,    64,   18,    5,   1;
  0,   10395,   2190,   441,  100,   25,   6,  1:
  0,  135135,  23535,  3807,  691,  145,  33,  7, 1;
  0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;
		

Crossrefs

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> doublefactorial(2*n-3)); # Peter Luschny, Oct 19 2022

Formula

T(n, k) = Sum_{j=0..n-k} T(n-1, k-1+j)*A111088(j).
Sum_{k=0..n} T(n, k) = A112934(n).
G.f.: 1/(1-xy/(1-x/(1-2x/(1-3x/(1-4x/(1-... (continued fraction). - Paul Barry, Jan 29 2009
Sum_{k=0..n} T(n,k)*2^(n-k) = A168441(n). - Philippe Deléham, Nov 28 2009
Previous Showing 31-40 of 66 results. Next