cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 292 results. Next

A276544 Triangle read by rows: T(n,k) = number of primitive (aperiodic) reversible string structures with n beads using exactly k different colors.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 9, 15, 6, 1, 0, 16, 49, 37, 9, 1, 0, 35, 160, 183, 76, 12, 1, 0, 66, 498, 876, 542, 142, 16, 1, 0, 133, 1544, 3930, 3523, 1346, 242, 20, 1, 0, 261, 4715, 17179, 21392, 11511, 2980, 390, 25, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 09 2017

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.

Examples

			Triangle starts
1
0   1
0   2    1
0   4    4     1
0   9   15     6     1
0  16   49    37     9     1
0  35  160   183    76    12    1
0  66  498   876   542   142   16   1
0 133 1544  3930  3523  1346  242  20  1
0 261 4715 17179 21392 11511 2980 390 25 1
...
Primitive reversible word structures are:
n=1: a => 1
n=2: ab => 1
n=3: aab, aba; abc => 2 + 1
n=4: aaab, aaba, aabb, abba => 4 (k=2)
     aabc, abac, abbc, abca => 4 (k=3)
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056336, A056337, A056338, A056339, A056340.
Partial row sums include A056331, A056332, A056333, A056334, A056335.
Row sums are A276549.

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[n == 0, 1, 0], 1, If[n > 0, 1, 0], _, If[OddQ[n], Sum[Binomial[(n - 1)/2, i] Ach[n - 1 - 2 i, k - 1], {i, 0, (n - 1)/2}], Sum[Binomial[n/2 - 1, i] (Ach[n - 2 - 2 i, k - 1] + 2^i Ach[n - 2 - 2 i, k - 2]), {i, 0, n/2 - 1}]]]
    T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] (StirlingS2[#, k] + Ach[#, k])/2& ];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 29 2018, after Robert A. Russell and Andrew Howroyd *)
  • PARI
    \\ here Ach is A304972 as matrix.
    Ach(n,m=n)={my(M=matrix(n, m, i, k, i>=k)); for(i=3, n, for(k=2, m, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    T(n,m=n)={my(M=matrix(n, m, i, k, stirling(i, k, 2)) + Ach(n,m)); matrix(n, m, i, k, sumdiv(i, d, moebius(i/d)*M[d,k]))/2}
    { my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 09 2020

Formula

T(n, k) = Sum_{d|n} mu(n/d) * A284949(d, k).

A284823 Array read by antidiagonals: T(n,k) = number of primitive (aperiodic) palindromes of length n using a maximum of k different symbols (n >= 1, k >= 1).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 4, 0, 2, 0, 5, 0, 6, 2, 0, 6, 0, 12, 6, 6, 0, 7, 0, 20, 12, 24, 4, 0, 8, 0, 30, 20, 60, 18, 14, 0, 9, 0, 42, 30, 120, 48, 78, 12, 0, 10, 0, 56, 42, 210, 100, 252, 72, 28, 0, 11, 0, 72, 56, 336, 180, 620, 240, 234, 24, 0, 12, 0, 90, 72, 504, 294, 1290, 600, 1008, 216, 62
Offset: 1

Views

Author

Andrew Howroyd, Apr 03 2017

Keywords

Examples

			Table starts:
1  2   3    4    5    6     7     8     9    10 ...
0  0   0    0    0    0     0     0     0     0 ...
0  2   6   12   20   30    42    56    72    90 ...
0  2   6   12   20   30    42    56    72    90 ...
0  6  24   60  120  210   336   504   720   990 ...
0  4  18   48  100  180   294   448   648   900 ...
0 14  78  252  620 1290  2394  4088  6552  9990 ...
0 12  72  240  600 1260  2352  4032  6480  9900 ...
0 28 234 1008 3100 7740 16758 32704 58968 99900 ...
0 24 216  960 3000 7560 16464 32256 58320 99000 ...
...
Row 4 includes palindromes of the form abba but excludes those of the form aaaa, so T(4,k) is k*(k-1).
Row 6 includes palindromes of the forms aabbaa, abbbba, abccba but excludes those of the forms aaaaaa, abaaba, so T(6,k) is 2*k*(k-1) + k*(k-1)*(k-2).
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056458, A056459, A056460, A056461, A056462.
Rows 5-10 are A007531(k+1), A045991, A058895, A047928(k-1), A135497, A133754.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, MoebiusMu[n/#]*k^Ceiling[#/2]&]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017 *)
  • PARI
    a(n,k) = sumdiv(n, d, moebius(n/d) * k^(ceil(d/2)));
    for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print();)

Formula

T(n,k) = Sum_{d | n} mu(n/d) * k^(ceiling(d/2)).

A284856 Array read by antidiagonals: T(n,k) = number of aperiodic necklaces (Lyndon words) with n beads and k colors that are the same when turned over.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 6, 6, 3, 0, 6, 10, 12, 12, 6, 0, 7, 15, 20, 30, 24, 7, 0, 8, 21, 30, 60, 60, 42, 14, 0, 9, 28, 42, 105, 120, 138, 78, 18, 0, 10, 36, 56, 168, 210, 340, 252, 144, 28, 0, 11, 45, 72, 252, 336, 705, 620, 600, 234, 39, 0
Offset: 1

Views

Author

Andrew Howroyd, Apr 04 2017

Keywords

Comments

Number of primitive (period n) periodic palindromes of length n using a maximum of k different symbols.

Examples

			Table starts:
1  2   3    4    5     6     7      8      9     10 ...
0  1   3    6   10    15    21     28     36     45 ...
0  2   6   12   20    30    42     56     72     90 ...
0  3  12   30   60   105   168    252    360    495 ...
0  6  24   60  120   210   336    504    720    990 ...
0  7  42  138  340   705  1302   2212   3528   5355 ...
0 14  78  252  620  1290  2394   4088   6552   9990 ...
0 18 144  600 1800  4410  9408  18144  32400  54450 ...
0 28 234 1008 3100  7740 16758  32704  58968  99900 ...
0 39 456 2490 9240 26985 66864 146916 294480 548955 ...
...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are: A056493, A056494, A056495, A056496, A056497.

Programs

  • Mathematica
    b[d_, k_] := If[EvenQ[d], (k^(d/2) + k^(d/2 + 1))/2, k^((d + 1)/2)];
    a[n_, k_] := DivisorSum[n, MoebiusMu[n/#] b[#, k] &];
    Table[a[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 06 2017, translated from PARI *)
  • PARI
    b(d,k) = if(d % 2 == 0, (k^(d/2) + k^(d/2+1))/2, k^((d+1)/2));
    a(n,k) = sumdiv(n,d, moebius(n/d) * b(d,k));
    for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print(););

Formula

T(n, k) = Sum_{d | n} mu(n/d) * A284855(d, k).

A285548 Array read by antidiagonals: T(m,n) = number of step cyclic shifted sequences of length n using a maximum of m different symbols.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 6, 10, 10, 5, 1, 6, 21, 20, 15, 6, 1, 13, 24, 55, 35, 21, 7, 1, 10, 92, 76, 120, 56, 28, 8, 1, 24, 78, 430, 201, 231, 84, 36, 9, 1, 22, 327, 460, 1505, 462, 406, 120, 45, 10, 1, 45, 443, 2605, 2015, 4291, 952, 666, 165, 55, 11
Offset: 1

Views

Author

Andrew Howroyd, Apr 20 2017

Keywords

Comments

See A056371, A002729 for an explanation of step shifts. Under step cyclic shifts, abcde, bdace, bcdea, cdeab and daceb etc. are equivalent.
Equivalently, the number of mappings with domain {0..n-1} and codomain {1..m} up to equivalence. Mappings A and B are equivalent if there is a d, prime to n, and a t such that A(i) = B((i*d + t) mod n) for i in {0..n-1}.
All column sequences are polynomials of order n.

Examples

			Table starts:
1  1  1   1   1     1     1      1      1       1 ...
2  3  4   6   6    13    10     24     22      45 ...
3  6 10  21  24    92    78    327    443    1632 ...
4 10 20  55  76   430   460   2605   5164   26962 ...
5 15 35 120 201  1505  2015  14070  37085  246753 ...
6 21 56 231 462  4291  6966  57561 188866 1519035 ...
7 28 84 406 952 10528 20140 192094 752087 7079800 ...
...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    IsLeastPoint[s_, f_] := Module[{t=f[s]}, While[t>s, t=f[t]]; Boole[s==t]];
    c[n_, k_, t_] := Sum[IsLeastPoint[u, Mod[#*k+t, n]&], {u, 0, n-1}];
    a[n_, x_] := Sum[If[GCD[k, n] == 1, x^c[n, k, t], 0], {t, 0, n-1}, {k, 1,
    n}] / (n*EulerPhi[n]);
    Table[a[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
  • PARI
    IsLeastPoint(s,f)={my(t=f(s)); while(t>s,t=f(t));s==t}
    C(n,k,t)=sum(u=0,n-1,IsLeastPoint(u,v->(v*k+t)%n));
    a(n,x)=sum(t=0, n-1, sum(k=1, n, if (gcd(k, n)==1, x^C(n,k,t),0)))/(n * eulerphi(n));
    for(m=1, 7, for(n=1, 10, print1( a(n,m), ", ") ); print(); );

A056293 Number of n-bead necklace structures using a maximum of five different colored beads.

Original entry on oeis.org

1, 2, 3, 7, 12, 42, 123, 503, 2008, 8720, 38365, 173609, 792828, 3662924, 17034381, 79703081, 374624254, 1767883444, 8370666417, 39751072847, 189262621864, 903220058756, 4319518316899, 20697040198889, 99343899144822, 477609477924308, 2299585449279713
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    Adn[d_, n_] := Module[{ c, t1, t2}, t2 = 0; For[c = 1, c <= d, c++, If[Mod[d, c] == 0 , t2 = t2 + (x^c/c)*(E^(c*z) - 1)]]; t1 = E^t2; t1 = Series[t1, {z, 0, n+1}]; Coefficient[t1, z, n]*n!]; Pn[n_] := Module[{ d, e, t1}, t1 = 0; For[d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*Adn[d, n/d]/n]]; t1/(1 - x)]; Pnq[n_, q_] := Module[{t1}, t1 = Series[Pn[n], {x, 0, q+1}] ; Coefficient[t1, x, q]]; a[n_] := Pnq[n, 5]; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Oct 04 2013, after N. J. A. Sloane's Maple code *)
    (* this Mathematica program uses Gilbert and Riordan's recurrence formula, which they recommend for calculations: *)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
      Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[SeriesCoefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]
    /(n (1 - x)), {x, 0, 5}], {n, 1, 40}] (* Robert A. Russell, Feb 24 2018 *)
    From Robert A. Russell, May 29 2018: (Start)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], 5 StirlingS2[n/#+4, 5] - 50 StirlingS2[n/#+3, 5] + 175 StirlingS2[n/#+2, 5] - 250 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 30], 4 StirlingS2[n/#+4, 5] - 41 StirlingS2[n/#+3, 5] + 149 StirlingS2[n/#+2, 5] - 226 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 20], 4 StirlingS2[n/#+4, 5] - 42 StirlingS2[n/#+3, 5] + 156 StirlingS2[n/#+2, 5] - 238 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 15], 3 StirlingS2[n/#+4, 5] - 33 StirlingS2[n/#+3, 5] + 129 StirlingS2[n/#+2, 5] - 210 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 12], 4 StirlingS2[n/#+4, 5] - 40 StirlingS2[n/#+3, 5] + 140 StirlingS2[n/#+2, 5] - 200 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], Divisible[#, 10], 3 StirlingS2[n/#+4, 5] - 33 StirlingS2[n/#+3, 5] + 130 StirlingS2[n/#+2, 5] - 214 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 6], 3 StirlingS2[n/#+4, 5] - 31 StirlingS2[n/#+3, 5] + 114 StirlingS2[n/#+2, 5] - 176 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], Divisible[#, 5], 2 StirlingS2[n/#+4, 5] - 23 StirlingS2[n/#+3, 5] + 95 StirlingS2[n/#+2, 5] - 165 StirlingS2[n/#+1, 5] + 100 StirlingS2[n/#, 5], Divisible[#, 4], 3 StirlingS2[n/#+4, 5] - 32 StirlingS2[n/#+3, 5] + 121 StirlingS2[n/#+2, 5] - 188 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], Divisible[#, 3], 2 StirlingS2[n/#+4, 5] - 23 StirlingS2[n/#+3, 5] + 94 StirlingS2[n/#+2, 5] - 160 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], Divisible[#, 2], 2 StirlingS2[n/#+4, 5] - 23 StirlingS2[n/#+3, 5] + 95 StirlingS2[n/#+2, 5] - 164 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], True, StirlingS2[n/#+4, 5] - 13 StirlingS2[n/#+3, 5] + 60 StirlingS2[n/#+2, 5] - 115 StirlingS2[n/#+1, 5] + 76 StirlingS2[n/#, 5]] &], {n, 1, 40}]
    mx = 40; Drop[CoefficientList[Series[1-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 60], Log[1-5x^d], Divisible[d, 30], (3 Log[1-5x^d] + Log[1-x^d]) / 4, Divisible[d, 20], (2 Log[1-5x^d] + Log[1-2x^d]) / 3, Divisible[d, 15], (3 Log[1-5x^d] + 2 Log[1-3x^d] + 3 Log[1-x^d]) / 8, Divisible[d, 12], 4 Log[1-5x^d] / 5, Divisible[d, 10], (5 Log[1-5x^d] + 4 Log[1-2x^d] + 3 Log[1-x^d]) / 12, Divisible[d, 6], (11 Log[1-5x^d] + 5 Log[1-x^d]) / 20, Divisible[d, 5], (5 Log[1-5x^d] + 2 Log[1-3x^d] + 4 Log[1-2x^d] + 9 Log[1-x^d]) / 24, Divisible[d, 4], (7 Log[1-5x^d] + 5 Log[1-2x^d]) / 15, Divisible[d, 3], (7 Log[1-5x^d] + 10 Log[1-3x^d] + 15 Log[1-x^d]) / 40, Divisible[d, 2], (13 Log[1-5x^d] + 20 Log[1-2x^d] + 15 Log[1-x^d]) / 60, True, (Log[1-5x^d] + 10 Log[1-3x^d] + 20 Log[1-2x^d] + 45 Log[1-x^d]) / 120], {d, 1, mx}], {x, 0, mx}], x], 1]
    (End)

Formula

Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (5*S2(n/d + 4, 5) - 50*S2(n/d + 3, 5) + 175*S2(n/d + 2, 5) - 250*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d==30 mod 60] * (4*S2(n/d+4,5) - 41*S2(n/d+3,5) + 149*S2(n/d+2,5) - 226*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d==20 mod 60 | d==40 mod 60] * (4*S2(n/d + 4, 5) - 42*S2(n/d + 3, 5) + 156*S2(n/d + 2, 5) - 238*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d==15 mod 60 | d==45 mod 60] * (3*S2(n/d + 4, 5) - 33*S2(n/d + 3, 5) + 129*S2(n/d + 2, 5) - 210*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d mod 60 in {12,24,36,48}] * (4*S2(n/d + 4, 5) - 40*S2(n/d + 3, 5) + 140*S2(n/d + 2, 5) - 200*S2(n/d+1, 5) + 96*S2(n/d, 5)) + [d=10 mod 60 | d==50 mod 60] * (3*S2(n/d + 4, 5) - 33*S2(n/d + 3, 5) + 130*S2(n/d + 2, 5) - 214*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d mod 60 in {6,18,42,54}] * (3*S2(n/d + 4, 5) - 31*S2(n/d + 3, 5) + 114*S2(n/d + 2, 5) - 176*S2(n/d + 1, 5) + 96*S2(n/d, 5)) + [d mod 60 in {5,25,35,55}] * (2*S2(n/d + 4, 5) - 23*S2(n/d + 3, 5) + 95*S2(n/d + 2, 5) - 165*S2(n/d + 1, 5) + 100*S2(n/d, 5)) + [d mod 60 in {4,8,16,28,32,44,52,56}] * (3*S2(n/d + 4, 5) - 32*S2(n/d + 3, 5) + 121*S2(n/d + 2, 5) - 188*S2(n/d + 1, 5) + 96*S2(n/d, 5)) + [d mod 60 in {3,9,21,27,33,39,51,57}] * (2*S2(n/d + 4, 5) - 23*S2(n/d + 3, 5) + 94*S2(n/d + 2, 5) - 160*S2(n/d + 1, 5) + 96*S2(n/d, 5)) + [d mod 60 in {2,14,22,26,34,38,46,58}] * (2*S2(n/d + 4, 5) - 23*S2(n/d + 3, 5) + 95*S2(n/d + 2, 5) - 164*S2(n/d + 1, 5) + 96*S2(n/d, 5)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (S2[n/d + 4, 5) - 13*S2(n/d + 3, 5) + 60*S2(n/d + 2, 5) - 115*S2(n/d + 1, 5) + 76*S2(n/d, 5))), where S2(n,k) is the Stirling subset number, A008277.
G.f.: 1 - Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * log(1-5x^d) + [d==30 mod 60] * (3*log(1-5x^d) + log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] * (2*log(1-5x^d) + log(1-2x^d)) / 3 + [d==15 mod 60 | d==45 mod 60] * (3*log(1-5x^d) + 2*log(1-3x^d) + 3*log(1-x^d)) / 8 + [d mod 60 in {12,24,36,48}] * 4*log(1-5x^d) / 5 + [d=10 mod 60 | d==50 mod 60] * (5*log(1-5x^d) + 4*log(1-2x^d) + 3*log(1-x^d)) / 12 + [d mod 60 in {6,18,42,54}] * (11*log(1-5x^d) + 5*log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] * (5*log(1-5x^d) + 2*log(1-3x^d) + 4*log(1-2x^d) + 9*log(1-x^d)) / 24 + [d mod 60 in {4,8,16,28,32,44,52,56}] * (7*log(1-5x^d) + 5*log(1-2x^d)) / 15 + [d mod 60 in {3,9,21,27,33,39,51,57}] * (7*log(1-5x^d) + 10*log(1-3x^d) + 15*log(1-x^d)) / 40 + [d mod 60 in {2,14,22,26,34,38,46,58}] * (13*log(1-5x^d) + 20*log(1-2x^d) + 15*log(1-x^d)) / 60 +[d mod 60 in{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (log(1-5x^d) + 10*log(1-3x^d) + 20*log(1-2x^d) + 45*log(1-x^d)) / 120).
(End)

A056295 Number of n-bead necklace structures using exactly two different colored beads.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 9, 19, 29, 55, 93, 179, 315, 595, 1095, 2067, 3855, 7315, 13797, 26271, 49939, 95419, 182361, 349715, 671091, 1290871, 2485533, 4794087, 9256395, 17896831, 34636833, 67110931, 130150587, 252648991, 490853415, 954444607, 1857283155, 3616828363
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

Examples

			For a(7) = 9, the color patterns are AAAAAAB, AAAAABB, AAAABAB, AAAABBB, AAABAAB, AABAABB, AABABAB, AAABABB, and AAABBAB. The first seven are achiral; the last two are a chiral pair. - _Robert A. Russell_, Mar 08 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Column 2 of A152175.

Programs

  • Maple
    See A000013.
  • Mathematica
    Table[DivisorSum[n, EulerPhi[#] If[OddQ[#], StirlingS2[n/#, 2], StirlingS2[n/#+1, 2]]&]/n, {n,1,30}] (* Robert A. Russell, Feb 20 2018 *)

Formula

a(n) = A000013(n) - 1.
From Robert A. Russell, Mar 08 2018: (Start)
G.f.: Sum_{ d>0 } phi(d)*(2*log(1-x^d) - (1+[d == 0 mod 2])*log(1-2*x^d)) / (2*d);
a(n) = (1/n)*Sum_{d|n} phi(d) * S2(n/d + [d == 0 mod 2], 2), where S2(n, k) is the Stirling subset number, A008277. (End)

A056326 Number of reversible string structures with n beads using exactly two different colors.

Original entry on oeis.org

0, 1, 2, 5, 9, 19, 35, 71, 135, 271, 527, 1055, 2079, 4159, 8255, 16511, 32895, 65791, 131327, 262655, 524799, 1049599, 2098175, 4196351, 8390655, 16781311, 33558527, 67117055, 134225919, 268451839, 536887295, 1073774591, 2147516415, 4295032831, 8590000127
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=2 of A284949 and of A291883.
Cf. A056309.

Programs

  • Mathematica
    Table[(StirlingS2[n,2] + StirlingS2[Floor[n/2]+1,2])/2, {n,1,30}] (* Robert A. Russell, Jan 29 2018 *)
    LinearRecurrence[{3, 0, -6, 4}, {0, 1, 2, 5}, 35] (* or *)
    Rest@ CoefficientList[Series[x^2*(x^2 + x - 1)/((x - 1) (2 x - 1) (2 x^2 - 1)), {x, 0, 35}], x] (* Michael De Vlieger, Jan 31 2018 *)

Formula

a(n) = A005418(n) - 1.
From Colin Barker, Nov 25 2012: (Start)
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
G.f.: x^2*(x^2+x-1)/((x-1)*(2*x-1)*(2*x^2-1)). (End)

A056411 Number of step cyclic shifted sequences using a maximum of three different symbols.

Original entry on oeis.org

3, 6, 10, 21, 24, 92, 78, 327, 443, 1632, 1698, 12769, 10464, 57840, 122822, 348222, 476052, 3597442, 3401970, 22006959, 41597374, 142677588, 186077886, 1476697627, 1694658003, 8147282460, 15690973754, 68149816689, 84520682160, 857935531804, 664166389302, 3620293575942, 8422974597554, 30656600391720, 59561470990362
Offset: 1

Views

Author

Keywords

Comments

See A056371 for an explanation of step shifts. Under step cyclic shifts, abcde, bdace, bcdea, cdeab and daceb etc. are equivalent.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Row 3 of A285548.
Cf. A002729.

Programs

  • Mathematica
    M[j_, L_] := Module[{m=1}, While[Sum[j^i, {i, 0, m-1}] ~Mod~ L != 0, m++]; m]; c[j_, t_, n_] := Sum[1/M[j, n/GCD[n, u*(j-1)+t]], {u, 0, n-1}]; CB[n_, k_] = If [n==1, k, 1/(n*EulerPhi[n])*Sum[If[1==GCD[n, j], k^c[j, t, n], 0], {t, 0, n-1}, {j, 1, n-1}]]; Table[Print[cb = CB[n, 3]]; cb, {n, 1, 35}] (* Jean-François Alcover, Dec 04 2015, after Joerg Arndt *)
  • PARI
    \\ see p.3 of the Dokovic et al. reference
    M(j,  L)={my(m=1); while ( sum(i=0, m-1, j^i) % L != 0, m+=1 ); m; }
    c(j, t, n)=sum(u=0,n-1, 1/M(j, n / gcd(n, u*(j-1)+t) ) );
    CB(n, k)=if (n==1,k, 1/(n*eulerphi(n)) * sum(t=0,n-1, sum(j=1,n-1, if(1==gcd(n,j), k^c(j,t,n), 0) ) ) );
    for(n=1, 66, print1(CB(n,3),", "));
    \\ second argument k=3, 4, 5, 6 respectively gives A056411, A056412, A056413, A056414.
    \\ Joerg Arndt, Aug 27 2014

Formula

Refer to Titsworth or slight "simplification" in Nester.

Extensions

Added more terms, Joerg Arndt, Aug 27 2014

A056452 a(n) = 6^floor((n+1)/2).

Original entry on oeis.org

1, 6, 6, 36, 36, 216, 216, 1296, 1296, 7776, 7776, 46656, 46656, 279936, 279936, 1679616, 1679616, 10077696, 10077696, 60466176, 60466176, 362797056, 362797056, 2176782336, 2176782336, 13060694016, 13060694016, 78364164096
Offset: 0

Views

Author

Keywords

Comments

Number of achiral rows of length n using up to six different colors. For a(3) = 36, the rows are AAA, ABA, ACA, ADA, AEA, AFA, BAB, BBB, BCB, BDB, BEB, BFB, CAC, CBC, CCC, CDC, CEC, CFC, DAD, DBD, DCD, DDD, DED, DFD, EAE, EBE, ECE, EDE, EEE, EFE, FAF, FBF, FCF, FDF, FEF, and FFF. - Robert A. Russell, Nov 08 2018
Also: a(n) is the number of palindromes with n digits using a maximum of six different symbols. - David A. Corneth, Nov 09 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=6 of A321391.
Cf. A016116.
Cf. A000400 (oriented), A056308 (unoriented), A320524 (chiral).

Programs

  • Magma
    [6^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
  • Maple
    A056452:=n->6^floor((n+1)/2);
  • Mathematica
    Riffle[6^Range[0, 20], 6^Range[20]] (* Harvey P. Dale, Jun 18 2017 *)
    Table[6^Ceiling[n/2], {n,0,40}] (* or *)
    LinearRecurrence[{0, 6}, {1, 6}, 40] (* Robert A. Russell, Nov 08 2018 *)

Formula

a(n) = 6^floor((n+1)/2).
a(n) = 6*a(n-2). - Colin Barker, May 06 2012
G.f.: (1+6*x) / (1-6*x^2). - Colin Barker, May 06 2012 [Adapted to offset 0 by Robert A. Russell, Nov 08 2018]
a(n) = C(6,0)*A000007(n) + C(6,1)*A057427(n) + C(6,2)*A056453(n) + C(6,3)*A056454(n) + C(6,4)*A056455(n) + C(6,5)*A056456(n) + C(6,6)*A056457(n). - Robert A. Russell, Nov 08 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 08 2018
Name corrected by David A. Corneth, Nov 08 2018

A320750 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented row of length n using k or fewer colors (subsets).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 6, 1, 1, 2, 4, 10, 10, 1, 1, 2, 4, 11, 25, 20, 1, 1, 2, 4, 11, 31, 70, 36, 1, 1, 2, 4, 11, 32, 107, 196, 72, 1, 1, 2, 4, 11, 32, 116, 379, 574, 136, 1, 1, 2, 4, 11, 32, 117, 455, 1451, 1681, 272, 1
Offset: 1

Views

Author

Robert A. Russell, Oct 27 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
In an unoriented row, chiral pairs are counted as one.
T(n,k) = Pi_k(P_n) which is the number of non-equivalent partitions of the path on n vertices, with at most k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Mohammad Hadi Shekarriz, Aug 21 2019
From Allan Bickle, Apr 05 2022: (Start)
The columns count unlabeled k-paths with n+k+2 vertices. (A k-path with order n at least k+2 is a k-tree with exactly two k-leaves (vertices of degree k). It can be constructed from a clique with k+1 vertices by iteratively adding a new degree k vertex adjacent to an existing clique containing an existing k-leaf.)
Recurrences for the columns appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)

Examples

			Array begins with T(1,1):
  1   1     1     1      1      1      1      1      1      1      1 ...
  1   2     2     2      2      2      2      2      2      2      2 ...
  1   3     4     4      4      4      4      4      4      4      4 ...
  1   6    10    11     11     11     11     11     11     11     11 ...
  1  10    25    31     32     32     32     32     32     32     32 ...
  1  20    70   107    116    117    117    117    117    117    117 ...
  1  36   196   379    455    467    468    468    468    468    468 ...
  1  72   574  1451   1993   2135   2151   2152   2152   2152   2152 ...
  1 136  1681  5611   9134  10480  10722  10742  10743  10743  10743 ...
  1 272  5002 22187  43580  55091  58071  58461  58486  58487  58487 ...
  1 528 14884 87979 211659 301633 333774 339764 340359 340389 340390 ...
For T(4,3)=10, the patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, AAAB, AABA, AABC, ABAC, the last four being chiral with partners ABBB, ABAA, ABCC, and ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Columns 1-7 are A000012, A005418, A001998(n-1), A056323, A056324, A056325, A345207.
As k increases, columns converge to A103293(n+1).
Cf. transpose of A278984 (oriented), A320751 (chiral), A305749 (achiral).
Partial column sums of A284949.

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[Sum[StirlingS2[n,j] + Ach[n,j], {j,k-n+1}]/2, {k,15}, {n,k}] // Flatten

Formula

T(n,k) = Sum_{j=1..k} (S2(n,j) + Ach(n,j))/2, where S2 is the Stirling subset number A008277 and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
T(n,k) = (A278984(k,n) + A305749(n,k)) / 2 = A278984(k,n) - A320751(n,k) = A320751(n,k) + A305749(n,k).
T(n,k) = Sum_{j=1..k} A284949(n,j).
Previous Showing 41-50 of 292 results. Next