cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A218134 Norm of coefficients in the expansion of 1/(1 - 2*x - i*x^2), where i is the imaginary unit.

Original entry on oeis.org

1, 4, 17, 80, 369, 1700, 7841, 36160, 166753, 768996, 3546289, 16354000, 75417809, 347795396, 1603886913, 7396455680, 34109360321, 157298104900, 725393076049, 3345209499600, 15426707209777, 71141522037604, 328074947492321, 1512944453384000, 6977067089461281
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

The radius of convergence of g.f. equals 1 + sqrt(2) - sqrt(2)*sqrt(1 + sqrt(2)) = 0.216845335...
The following remarks assume an offset of 1. This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. The sequence satisfies a linear recurrence of order 4. It is the case P1 = 4, P2 = -4, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Examples

			G.f.: A(x) = 1 + 4*x + 17*x^2 + 80*x^3 + 369*x^4 + 1700*x^5 + 7841*x^6 +...
The terms equal the norm of the complex coefficients in the expansion:
1/(1 - 2*x - i*x^2) = 1 + 2*x + (4 + i)*x^2 + (8 + 4*i)*x^3 + (15 + 12*i)*x^4 + (26 + 32*i)*x^5 + (40 + 79*i)*x^6 + (48 + 184*i)*x^7 +...
so that
a(1) = 2^2, a(2) = 4^2 + 1, a(3) = 8^2 + 4^2, a(4) = 15^2 + 12^2, a(5) = 26^2 + 32^2, ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, 2, 4, -1}, {1, 4, 17, 80}, 25] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=norm(polcoeff(1/(1-2*x-I*x^2+x*O(x^n)), n))}
    for(n=0,31,print1(a(n),", "))

Formula

G.f.: (1 - x^2)/(1 - 4*x - 2*x^2 - 4*x^3 + x^4).
From Peter Bala, Mar 25 2014: (Start)
The following formulas assume an offset of 1.
a(n) = 1/(2*sqrt(2))*(T(n,1 + sqrt(2)) - T(n,1 - sqrt(2))), where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 2]. Note, the bottom left element of the matrix M^n gives the Lucas sequence A000129.
a(n) = U(n-1,exp(2*i*Pi/8))*U(n-1,exp(-2*i*Pi/8)) = U(n-1,(1 + i)/sqrt(2))*U(n-1,(1 - i)/sqrt(2)), where U(n,x) denotes the Chebyshev polynomial of the second kind.
The o.g.f. is the Chebyshev transform of the rational function x/(1 - 4*x - 4*x^2), where the Chebyshev transform takes the function A(x) to the function (1 - x^2)/(1 + x^2)*A(x/(1 + x^2)). See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)

A099582 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*4^(n-k-1).

Original entry on oeis.org

0, 0, 1, 4, 24, 112, 560, 2688, 13056, 62976, 304384, 1469440, 7096320, 34263040, 165441536, 798818304, 3857055744, 18623496192, 89922273280, 434183077888, 2096421666816, 10122418978816, 48875363631104, 235991130439680
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Comments

In general a(n) = Sum{k=0..floor(n/2)} binomial(n-k, k-1) * r^(n-k-1) has g.f. x^2/((1-r*x^2)*(1-r*x-r*x^2)) and satisfies a(n) = r*a(n-1) + 2*r*a(n-2) - r^2*a(n-3) - r^2*a(n-4).

Crossrefs

Programs

  • Magma
    I:=[0,0,1,4]; [n le 4 select I[n] else 4*(Self(n-1) +2*Self(n-2) -4*Self(n-3) -4*Self(n-4)): n in [1..41]]; // G. C. Greubel, Jul 22 2022
    
  • Mathematica
    Table[Sum[Binomial[n-k,k-1]*4^(n-k-1),{k,0,Floor[n/2]}],{n,0,30}] (* or *) LinearRecurrence[{4,8,-16,-16},{0,0,1,4},30] (* Harvey P. Dale, Jul 19 2012 *)
  • SageMath
    [2^(n-3)*(lucas_number1(n,2,-1) - (n%2)) for n in (0..40)] # G. C. Greubel, Jul 22 2022

Formula

G.f.: x^2/((1-4*x^2)*(1-4*x-4*x^2)).
a(n) = 4*a(n-1) + 8*a(n-2) - 16*a(n-3) - 16*a(n-4) with a(n) = (n^3-n)/6 for n<5.
From G. C. Greubel, Jul 22 2022: (Start)
a(n) = 2^(n-4)*(2*A000129(n) - (1 - (-1)^n)).
a(n) = (1/4)*(A057087(n-1) - 2^(n-2)*(1 - (-1)^n)).
E.g.f.: (exp(2*x)*sinh(2*sqrt(2)*x) - sqrt(2)*sinh(2*x))/(8*sqrt(2)). (End)

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A218988 Power floor sequence of 2+sqrt(8).

Original entry on oeis.org

4, 19, 91, 439, 2119, 10231, 49399, 238519, 1151671, 5560759, 26849719, 129641911, 625966519, 3022433719, 14593600951, 70464138679, 340230958519, 1642780388791, 7932045389239, 38299303112119, 184925394005431, 892898788470199, 4311296729902519
Offset: 0

Views

Author

Clark Kimberling, Nov 11 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(8), and the limit p1(r) = 3.8983688904482395322594950087206...
See A218989 for the power floor function, p4. For comparison with p1, limit(p4(r)/p1(r) = 4/3.

Examples

			a(0) = [r] = 4, where r = 2+sqrt(8).
a(1) = [4*r] = 19; a(2) = [19*r] = 91.
		

Crossrefs

Programs

  • Mathematica
    x = 2 + Sqrt[8]; z = 30; (* z = # terms in sequences *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    t1 = Table[p1[n], {n, 0, z}]  (* this sequence *)
    t2 = Table[p2[n], {n, 0, z}]  (* A057087 *)
    t3 = Table[p3[n], {n, 0, z}]  (* A086347 *)
    t4 = Table[p4[n], {n, 0, z}]  (* A218989 *)
  • PARI
    Vec((4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017

Formula

a(n) = floor(x*a(n-1)), where x=2+sqrt(8), a(0) = floor(x).
a(n) = 5*a(n-1) - 4*a(n-3).
G.f.: (4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)). [Corrected by Colin Barker, Nov 13 2017]
a(n) = (1/28)*(4 + (54-39*sqrt(2))*(2-2*sqrt(2))^n + (2*(1+sqrt(2)))^n*(54+39*sqrt(2))). - Colin Barker, Nov 13 2017
From Philippe Deléham, Mar 18 2024: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) - 1.
a(n-1) = Sum_{k = 0..n} A370174(n,k)*3^k. (End)

A218989 Power ceiling sequence of 2+sqrt(8).

Original entry on oeis.org

5, 25, 121, 585, 2825, 13641, 65865, 318025, 1535561, 7414345, 35799625, 172855881, 834622025, 4029911625, 19458134601, 93952184905, 453641278025, 2190373851721, 10576060518985, 51065737482825, 246567192007241, 1190531717960265, 5748395639870025
Offset: 0

Views

Author

Clark Kimberling, Nov 11 2012

Keywords

Comments

See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(8), and the limit p4(r) = (18 + 13*sqrt(2))/2 = 5.1978251872643193763459933449608678602008191971286...
See A218988 for the power floor function, p1(x); for comparison of p1 and p4, we have limit(p4(r)/p1(r) = 4 - sqrt(7).

Examples

			a(0) = ceiling(r) = 5, where r = 2+sqrt(8);
a(1) = ceiling(5*r) = 25; a(2) = ceiling(25*r) = 121.
		

Crossrefs

Programs

  • Mathematica
    (See A218988.)
  • PARI
    Vec((5 - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017

Formula

a(n) = ceiling(x*a(n-1)), where x=2+sqrt(8), a(0) = ceiling(x).
a(n) = 5*a(n-1) - 4*a(n-3).
G.f.: (5 - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)). Corrected by Colin Barker, Nov 13 2017
a(n) = (1/7)*(-1 + (18-13*sqrt(2))*(2-2*sqrt(2))^n + (2*(1+sqrt(2)))^n*(18+13*sqrt(2))). - Colin Barker, Nov 13 2017

A342120 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - k*x - k*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 16, 5, 0, 1, 5, 20, 45, 44, 8, 0, 1, 6, 30, 96, 171, 120, 13, 0, 1, 7, 42, 175, 464, 648, 328, 21, 0, 1, 8, 56, 288, 1025, 2240, 2457, 896, 34, 0, 1, 9, 72, 441, 1980, 6000, 10816, 9315, 2448, 55, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,   1,    1,    1, ...
  0, 1,   2,   3,    4,    5, ...
  0, 2,   6,  12,   20,   30, ...
  0, 3,  16,  45,   96,  175, ...
  0, 5,  44, 171,  464, 1025, ...
  0, 8, 120, 648, 2240, 6000, ...
		

Crossrefs

Columns 0..10 give A000007, A000045(n+1), A002605(n+1), A030195(n+1), A057087, A057088, A057089, A057090, A057091, A057092, A057093.
Rows 0..2 give A000012, A001477, A002378.
Main diagonal gives A109516(n+1).

Programs

  • Maple
    T:= (n, k)-> (<<0|1>, >^(n+1))[1, 2]:
    seq(seq(T(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 01 2021
  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    T(n, k) = sum(j=0, n\2, k^(n-j)*binomial(n-j, j));
    
  • PARI
    T(n, k) = sum(j=0, n, k^j*binomial(j, n-j));
    
  • PARI
    T(n, k) = round((-sqrt(k)*I)^n*polchebyshev(n, 2, sqrt(k)*I/2));

Formula

T(0,k) = 1, T(1,k) = k and T(n,k) = k*(T(n-1,k) + T(n-2,k)) for n > 1.
T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n-j,j) = Sum_{j=0..n} k^j * binomial(j,n-j).
T(n,k) = (-sqrt(k)*i)^n * S(n, sqrt(k)*i) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind.

A015541 Expansion of x/(1 - 5*x - 7*x^2).

Original entry on oeis.org

0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 3, 8, 6, 8, 24, 6, 6, 24, 24, 5, 24, 12, 6, 8, 12, 16, 24, 120, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) + 7*a(n-2).

A015544 Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
  • PARI
    A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 8*a(n-2).
G.f.: x/(1 - 5*x - 8*x^2). - M. F. Hasler, Mar 06 2009

Extensions

More precise definition by M. F. Hasler, Mar 06 2009

A110047 Expansion of (1+2*x-4*x^2)/((2*x+1)*(2*x-1)*(4*x^2+4*x-1)).

Original entry on oeis.org

1, 6, 28, 144, 688, 3360, 16192, 78336, 378112, 1826304, 8817664, 42577920, 205582336, 992649216, 4792926208, 23142334464, 111741042688, 539533639680, 2605098729472, 12578530000896, 60734514921472, 293252181786624, 1415946786832384, 6836795882864640
Offset: 0

Views

Author

Creighton Dement, Jul 10 2005

Keywords

Comments

Note (see program code): ibaseseq[A*B] = A057087, basejseq[A*B] = A099582, tesseq[A*B] = A110046.

Crossrefs

Programs

  • Maple
    seriestolist(series((1+2*x-4*x^2)/((2*x+1)*(2*x-1)*(4*x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: -kbasekseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'
  • Mathematica
    CoefficientList[Series[(1 + 2 x - 4 x^2)/((2 x + 1)(2 x - 1)(4 x^2 + 4 x - 1)), {x, 0, 21}], x] (* or *)
    LinearRecurrence[{4, 8, -16, -16}, {1, 6, 28, 144}, 22] (* Michael De Vlieger, Feb 17 2017 *)
  • PARI
    Vec((1+2*x-4*x^2) / ((2*x+1)*(2*x-1)*(4*x^2+4*x-1)) + O(x^30)) \\ Colin Barker, Feb 17 2017

Formula

a(n) = 4*a(n-1) + 8*a(n-2) - 16*a(n-3) - 16*a(n-4). - Matthew House, Feb 17 2017
a(n) = (-3*(2-2*sqrt(2))^n*(-2+sqrt(2)) + 2^n*(-2*(1+(-1)^n)+3*(1+sqrt(2))^n*(2+sqrt(2)))) / 8. - Colin Barker, Feb 17 2017

Extensions

Definition corrected by Matthew House, Feb 17 2017

A196468 a(1)=11; a(n) = floor((2 + sqrt(8))*a(n-1)) for n > 1.

Original entry on oeis.org

11, 53, 255, 1231, 5943, 28695, 138551, 668983, 3230135, 15596471, 75306423, 363611575, 1755671991, 8477134263, 40931225015, 197633437111, 954258648503, 4607568342455, 22247307963831, 107419505225143, 518667252755895, 2504347031924151, 12092057138720183
Offset: 1

Views

Author

Philippe Deléham, Oct 02 2011

Keywords

Comments

Contains only odd numbers.

Crossrefs

Programs

  • Magma
    I:=[11,53,255]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 05 2011
  • Mathematica
    NestList[Floor[(2+Sqrt[8])#]&,11,30] (* or *) LinearRecurrence[{5,0,-4},{11,53,255},30] (* Harvey P. Dale, Nov 18 2013 *)

Formula

G.f.: -x*(-11 + 2*x + 10*x^2) / ( (x-1)*(4*x^2 + 4*x - 1) ).
a(n) = (2 + 33*A057087(n) + 20*A057087(n-1))/14. - R. J. Mathar, Oct 04 2011
Previous Showing 21-30 of 37 results. Next