cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A057941 Number of prime factors of 3^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 3, 2, 3, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 2, 5, 4, 4, 3, 7, 4, 3, 6, 5, 4, 7, 4, 5, 6, 4, 2, 7, 4, 5, 4, 5, 4, 8, 5, 4, 7, 3, 5, 10, 4, 5, 4, 5, 8, 9, 4, 4, 5, 7, 6, 8, 4, 4, 7, 4, 5, 13, 2, 5, 6, 4, 5, 9, 9, 7, 8, 4, 5, 12, 6, 6, 7, 5, 5, 12, 5, 6, 10, 9, 7, 11, 6, 5, 9, 8, 4, 9, 4, 8, 6, 5, 9, 14, 6, 4
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), this sequence (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057958(2n) - A057958(n) - T. D. Noe, Jun 19 2003
a(n) = A001222(A034472(n)). - Amiram Eldar, Feb 01 2020

A057952 Number of prime factors of 9^n - 1 (counted with multiplicity).

Original entry on oeis.org

3, 5, 5, 7, 6, 8, 5, 10, 8, 10, 7, 11, 5, 9, 11, 12, 8, 12, 7, 13, 11, 11, 6, 17, 10, 9, 13, 13, 9, 17, 8, 14, 12, 12, 11, 16, 8, 11, 15, 18, 8, 18, 6, 16, 19, 10, 10, 21, 12, 18, 15, 13, 8, 18, 15, 19, 15, 13, 7, 24, 7, 13, 19, 16, 12, 18, 8, 17, 15, 20, 9, 24, 9, 13, 22, 17, 13, 22
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A046051 (b=2), A057958 (b=3), A057957 (b=4), A057956 (b=5), A057955 (b=6), A057954 (b=7), A057953 (b=8), this sequence (b=9), A057951 (b=10), A366682 (b=11), A366708 (b=12).

Programs

  • Mathematica
    PrimeOmega[Table[9^n - 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

Mobius transform of A085034. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024101(n)) = A057958(2*n). - Amiram Eldar, Feb 02 2020
a(n) = A057941(n) + A057958(n). - Max Alekseyev, Jan 07 2024

A057956 Number of prime factors of 5^n - 1 (counted with multiplicity).

Original entry on oeis.org

2, 4, 3, 6, 4, 7, 3, 8, 5, 7, 3, 10, 3, 7, 7, 11, 4, 11, 5, 11, 6, 8, 4, 13, 8, 7, 9, 10, 5, 14, 4, 14, 6, 8, 9, 16, 5, 10, 6, 15, 4, 16, 4, 12, 12, 8, 3, 17, 4, 13, 8, 12, 5, 19, 10, 13, 7, 9, 4, 21, 5, 9, 11, 18, 8, 15, 7, 14, 9, 16, 4, 22, 5, 10, 16, 14, 7, 14, 5, 20, 11, 10, 5, 22, 9, 10
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), this sequence (b=5), A057957 (b=4), A057958 (b=3), A046051 (b=2).

Programs

  • Mathematica
    PrimeOmega[5^Range[90]-1] (* Harvey P. Dale, Dec 16 2017 *)

Formula

Mobius transform of A085030. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024049(n)). - Amiram Eldar, Feb 01 2020

A143663 a(n) is the least prime such that the multiplicative order of 3 mod a(n) equals n, or a(n)=1 if no such prime exists.

Original entry on oeis.org

2, 1, 13, 5, 11, 7, 1093, 41, 757, 61, 23, 73, 797161, 547, 4561, 17, 1871, 19, 1597, 1181, 368089, 67, 47, 6481, 8951, 398581, 109, 29, 59, 31, 683, 21523361, 2413941289, 103, 71, 530713, 13097927, 2851, 313, 42521761, 83, 43, 431, 5501, 181, 23535794707
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2008

Keywords

Comments

If a(n) differs from 1, then a(n) is the minimal prime divisor of A064079(n).

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Maple
    a:= proc(n) local f,p;
    f:= numtheory:-factorset(3^n - 1);
    for  p in f do
       if numtheory:-order(3,p) = n then return p fi
    od:
    1
    end proc:
    seq(a(n),n=1..100); # Robert Israel, Oct 13 2014
  • Mathematica
    p = 2; t = Table[0, {100}]; While[p < 100000001, a = MultiplicativeOrder[3, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p; Print[{a, p}]];  p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)

Extensions

More terms from Robert G. Wilson v, Dec 11 2013

A085028 Number of prime factors of cyclotomic(n,3), which is A019321(n), the value of the n-th cyclotomic polynomial evaluated at x=3.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 1, 3, 2, 1, 2, 2, 4, 1, 3, 3, 2, 2, 3, 1, 4, 3, 5, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 3, 4, 3, 2, 3, 2, 4, 2, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057958, number of prime factors of 3^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), this sequence (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 3]]][[2]], {n, 1, 100}]

A173898 Decimal expansion of sum of the reciprocals of the Mersenne primes.

Original entry on oeis.org

5, 1, 6, 4, 5, 4, 1, 7, 8, 9, 4, 0, 7, 8, 8, 5, 6, 5, 3, 3, 0, 4, 8, 7, 3, 4, 2, 9, 7, 1, 5, 2, 2, 8, 5, 8, 8, 1, 5, 9, 6, 8, 5, 5, 3, 4, 1, 5, 4, 1, 9, 7, 0, 1, 4, 4, 1, 9, 3, 1, 0, 6, 5, 2, 7, 3, 5, 6, 8, 7, 0, 1, 4, 4, 0, 2, 1, 2, 7, 2, 3, 4, 9, 9, 1, 5, 4, 8, 8, 3, 2, 9, 3, 6, 6, 6, 2, 1, 5, 3, 7, 4, 0, 3, 2, 4
Offset: 0

Views

Author

Jonathan Vos Post, Mar 01 2010

Keywords

Comments

We know this a priori to be strictly less than the Erdős-Borwein constant (A065442), which Erdős (1948) showed to be irrational. This new constant would also seem to be irrational.

Examples

			Decimal expansion of (1/3) + (1/7) + (1/31) + (1/127) + (1/8191) + (1/131071) + (1/524287) + ... = .5164541789407885653304873429715228588159685534154197.
This has continued fraction expansion 0 + 1/(1 + 1/(1 + 1/(14 + 1/(1 + ...)))) (see A209601).
		

Crossrefs

Cf. A209601, A000668, A065442 (decimal expansion of Erdos-Borwein constant), A000043, A001348, A046051, A057951-A057958, A034876, A124477, A135659, A019279, A061652, A000225.

Programs

  • Maple
    Digits := 120 ; L := [ 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917 ] ;
    x := 0 ; for i from 1 to 30 do x := x+1.0/(2^op(i,L)-1 ); end do ;
  • Mathematica
    RealDigits[Sum[1/(2^p - 1), {p, MersennePrimeExponent[Range[14]]}], 10, 100][[1]] (* Amiram Eldar, May 24 2020 *)
  • PARI
    isM(p)=my(m=Mod(4,2^p-1));for(i=1,p-2,m=m^2-2);!m
    s=1/3;forprime(p=3,default(realprecision)*log(10)\log(2), if(isM(p), s+=1./(2^p-1)));s \\ Charles R Greathouse IV, Mar 22 2012

Formula

Sum_{i>=1} 1/A000668(i).

Extensions

Entry revised by N. J. A. Sloane, Mar 10 2012

A366708 Number of prime factors of 12^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 3, 6, 4, 4, 4, 8, 3, 6, 6, 9, 3, 9, 2, 8, 5, 6, 4, 12, 4, 8, 6, 10, 5, 13, 5, 11, 8, 6, 9, 14, 3, 6, 7, 14, 4, 14, 5, 12, 12, 8, 3, 18, 5, 10, 6, 13, 7, 16, 8, 13, 7, 8, 4, 19, 4, 8, 8, 13, 8, 17, 5, 10, 7, 14, 4, 21, 3, 7, 11, 11, 11, 18, 4
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[12^Range[70]-1]
  • PARI
    a(n)=bigomega(12^n-1)

Formula

a(n) = bigomega(12^n-1) = A001222(A024140(n)).

A366682 Number of prime factors of 11^n - 1 (counted with multiplicity).

Original entry on oeis.org

2, 5, 4, 7, 4, 9, 4, 9, 5, 8, 4, 13, 4, 8, 7, 12, 3, 12, 3, 11, 10, 11, 5, 17, 8, 10, 6, 13, 4, 15, 5, 15, 9, 9, 8, 17, 6, 10, 12, 15, 9, 17, 4, 15, 9, 12, 5, 24, 7, 14, 9, 13, 6, 16, 10, 19, 8, 10, 5, 21, 5, 12, 16, 19, 8, 22, 6, 15, 10, 19, 7, 24, 3, 11, 15
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[11^Range[70]-1]
  • PARI
    a(n)=bigomega(11^n-1)

Formula

a(n) = bigomega(11^n-1) = A001222(A024127(n)).

A002591 Largest prime factor of 3^(2n+1) - 1.

Original entry on oeis.org

2, 13, 11, 1093, 757, 3851, 797161, 4561, 34511, 363889, 368089, 1001523179, 391151, 8209, 20381027, 4404047, 2413941289, 2664097031, 17189128703, 797161, 86950696619, 380808546861411923, 927001, 96656723, 131713, 99810171997
Offset: 0

Views

Author

Keywords

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 28.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Together with A274909 forms bisection of A074477.Cf. A057958, A059885, A085028, A133801, A235366.

Programs

  • Mathematica
    Table[FactorInteger[3^(2n-1)-1][[-1,1]],{n,30}] (* Harvey P. Dale, Oct 19 2022 *)

Formula

a(n) = A074477(2n+1). - Max Alekseyev, May 22 2022

Extensions

Corrected and extended by Jud McCranie, Jan 03 2001
Terms up to a(307) in b-file from Sean A. Irvine, Apr 20 2014
a(0) prepended and a(308)-a(344) added to b-file by Max Alekseyev, Apr 24 2019, Sep 10 2020, Aug 26 2021, May 22 2022

A109472 Cumulative sum of primes p such that 2^p - 1 is a Mersenne prime.

Original entry on oeis.org

2, 5, 10, 17, 30, 47, 66, 97, 158, 247, 354, 481, 1002, 1609, 2888, 5091, 7372, 10589, 14842, 19265, 28954, 38895, 50108, 70045, 91746, 114955, 159452, 245695, 356198, 488247, 704338, 1461177, 2320610, 3578397, 4976666, 7952887, 10974264, 17946857, 31413774, 52409785, 76446368, 102411319, 132813776, 165396433, 202553100, 245196901, 288309510
Offset: 1

Views

Author

Jonathan Vos Post, Aug 28 2005

Keywords

Comments

Prime cumulative sum of primes p such that 2^p - 1 is a Mersenne prime include: a(1) = 2, a(2) = 5, a(4) = 17, a(6) = 47, a(8) = 97, a(14) = 1609, a(18) = 10589. After 1, all such indices x of prime a(x) must be even.

Examples

			a(1) = 2, since 2^2-1 = 3 is a Mersenne prime.
a(2) = 2 + 3 = 5, since 2^3-1 = 7 is a Mersenne prime.
a(3) = 2 + 3 + 5 = 10, since 2^5-1 = 31 is a Mersenne prime.
a(4) = 2 + 3 + 5 + 7 = 17, since 2^7-1 = 127 is a Mersenne prime; 17 itself is prime (in fact a p such that 2^p-1 is a Mersenne prime).
a(18) = 2 + 3 + 5 + 7 + 13 + 17 + 19 + 31 + 61 + 89 + 107 + 127 + 521 + 607 + 1279 + 2203 + 2281 + 3217 = 10589 (which is prime).
		

Crossrefs

Cf. A000043, A000668 for the Mersenne primes, A001348, A046051, A057951-A057958.

Programs

Formula

a(n) = Sum_{i=1..n} A000043(i).

Extensions

a(38)-a(47) from Gord Palameta, Jul 21 2018
Previous Showing 11-20 of 21 results. Next