cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A340385 Number of integer partitions of n into an odd number of parts, the greatest of which is odd.

Original entry on oeis.org

1, 0, 2, 0, 3, 1, 6, 3, 10, 7, 18, 15, 30, 28, 51, 50, 82, 87, 134, 145, 211, 235, 331, 375, 510, 586, 779, 901, 1172, 1366, 1750, 2045, 2581, 3026, 3778, 4433, 5476, 6430, 7878, 9246, 11240, 13189, 15931, 18670, 22417, 26242, 31349, 36646, 43567, 50854
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2021

Keywords

Examples

			The a(3) = 2 through a(10) = 7 partitions:
  3     5       321   7         332     9           532
  111   311           322       521     333         541
        11111         331       32111   522         721
                      511               531         32221
                      31111             711         33211
                      1111111           32211       52111
                                        33111       3211111
                                        51111
                                        3111111
                                        111111111
		

Crossrefs

Partitions of odd length are counted by A027193, ranked by A026424.
Partitions with odd maximum are counted by A027193, ranked by A244991.
The Heinz numbers of these partitions are given by A340386.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.
A000009 counts partitions into odd parts, ranked by A066208.
A026804 counts partitions whose least part is odd.
A058695 counts partitions of odd numbers, ranked by A300063.
A072233 counts partitions by sum and length.
A101707 counts partitions with odd rank.
A160786 counts odd-length partitions of odd numbers, ranked by A300272.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]*Max[#]]&]],{n,30}]

A340692 Number of integer partitions of n of odd rank.

Original entry on oeis.org

0, 0, 2, 0, 4, 2, 8, 4, 14, 12, 26, 22, 44, 44, 76, 78, 126, 138, 206, 228, 330, 378, 524, 602, 814, 950, 1252, 1466, 1900, 2238, 2854, 3362, 4236, 5006, 6232, 7356, 9078, 10720, 13118, 15470, 18800, 22152, 26744, 31456, 37772, 44368, 53002, 62134, 73894
Offset: 0

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The a(0) = 0 through a(9) = 12 partitions (empty columns indicated by dots):
  .  .  (2)   .  (4)     (32)   (6)       (52)     (8)         (54)
        (11)     (31)    (221)  (33)      (421)    (53)        (72)
                 (211)          (51)      (3211)   (71)        (432)
                 (1111)         (222)     (22111)  (422)       (441)
                                (411)              (431)       (621)
                                (3111)             (611)       (3222)
                                (21111)            (3221)      (3321)
                                (111111)           (3311)      (5211)
                                                   (5111)      (22221)
                                                   (22211)     (42111)
                                                   (41111)     (321111)
                                                   (311111)    (2211111)
                                                   (2111111)
                                                   (11111111)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of length/maximum instead of rank is A027193 (A026424/A244991).
The case of odd positive rank is A101707 is (A340604).
The strict case is A117193.
The even version is A340601 (A340602).
The Heinz numbers of these partitions are (A340603).
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A063995/A105806 count partitions by Dyson rank.
A064173 counts partitions of positive/negative rank (A340787/A340788).
A064174 counts partitions of nonpositive/nonnegative rank (A324521/A324562).
A101198 counts partitions of rank 1 (A325233).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A324520 counts partitions with rank equal to least part (A324519).
- Odd -
A000009 counts partitions into odd parts (A066208).
A026804 counts partitions whose least part is odd.
A058695 counts partitions of odd numbers (A300063).
A067659 counts strict partitions of odd length (A030059).
A160786 counts odd-length partitions of odd numbers (A300272).
A339890 counts factorizations of odd length.
A340385 counts partitions of odd length and maximum (A340386).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Max[#]-Length[#]]&]],{n,0,30}]

Formula

Having odd rank is preserved under conjugation, and self-conjugate partitions cannot have odd rank, so a(n) = 2*A101707(n) for n > 0.

A087787 a(n) = Sum_{k=0..n} (-1)^(n-k)*A000041(k).

Original entry on oeis.org

1, 0, 2, 1, 4, 3, 8, 7, 15, 15, 27, 29, 48, 53, 82, 94, 137, 160, 225, 265, 362, 430, 572, 683, 892, 1066, 1370, 1640, 2078, 2487, 3117, 3725, 4624, 5519, 6791, 8092, 9885, 11752, 14263, 16922, 20416, 24167, 29007, 34254, 40921, 48213, 57345, 67409
Offset: 0

Views

Author

Vladeta Jovovic, Oct 07 2003

Keywords

Comments

Essentially first differences of A024786 (see the formula). Also, a(n) is the number of 2's in the last section of the set of partitions of n+2 (see A135010). - Omar E. Pol, Sep 10 2008
From Gus Wiseman, May 20 2024: (Start)
Also the number of integer partitions of n containing an even number of ones, ranked by A003159. The a(0) = 1 through a(8) = 15 partitions are:
() . (2) (3) (4) (5) (6) (7) (8)
(11) (22) (32) (33) (43) (44)
(211) (311) (42) (52) (53)
(1111) (222) (322) (62)
(411) (511) (332)
(2211) (3211) (422)
(21111) (31111) (611)
(111111) (2222)
(3311)
(4211)
(22211)
(41111)
(221111)
(2111111)
(11111111)
Also the number of integer partitions of n + 1 containing an odd number of ones, ranked by A036554.
(End)

Crossrefs

The unsigned version is A000070, strict A036469.
For powers of 2 instead number of partitions we have A001045.
The strict or odd version is A025147 or A096765.
The ordered version (compositions instead of partitions) is A078008.
For powers of 2 instead of -1 we have A259401, cf. A259400.
A002865 counts partitions with no ones, column k=0 of A116598.
A072233 counts partitions by sum and length.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*PartitionsP[k], {k,0,n}], {n,0,50}] (* Vaclav Kotesovec, Aug 16 2015 *)
    (* more efficient program *) sig = 1; su = 1; Flatten[{1, Table[sig = -sig; su = su + sig*PartitionsP[n]; Abs[su], {n, 1, 50}]}] (* Vaclav Kotesovec, Nov 06 2016 *)
    Table[Length[Select[IntegerPartitions[n], EvenQ[Count[#,1]]&]],{n,0,30}] (* Gus Wiseman, May 20 2024 *)
  • Python
    from sympy import npartitions
    def A087787(n): return sum(-npartitions(k) if n-k&1 else npartitions(k) for k in range(n+1)) # Chai Wah Wu, Oct 25 2023

Formula

G.f.: 1/(1+x)*1/Product_{k>0} (1-x^k).
a(n) = 1/n*Sum_{k=1..n} (sigma(k)+(-1)^k)*a(n-k).
a(n) = A024786(n+2)-A024786(n+1). - Omar E. Pol, Sep 10 2008
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) * (1 + (11*Pi/(24*sqrt(6)) - sqrt(3/2)/Pi)/sqrt(n) - (11/16 + (23*Pi^2)/6912)/n). - Vaclav Kotesovec, Nov 05 2016
a(n) = A000041(n) - a(n-1). - Jon Maiga, Aug 29 2019
Alternating partial sums of A000041. - Gus Wiseman, May 20 2024

A340784 Heinz numbers of even-length integer partitions of even numbers.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 111, 115, 118, 121, 129, 133, 134, 136, 144, 146, 155, 156, 159, 160, 166, 169, 183, 184, 187, 189, 194, 196, 198, 203, 205, 206, 210, 213, 218, 220
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are positive integers whose number of prime indices and sum of prime indices are both even, counting multiplicity in both cases.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 28 2024

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()            57: (8,2)            118: (17,1)
      4: (1,1)         62: (11,1)           121: (5,5)
      9: (2,2)         64: (1,1,1,1,1,1)    129: (14,2)
     10: (3,1)         81: (2,2,2,2)        133: (8,4)
     16: (1,1,1,1)     82: (13,1)           134: (19,1)
     21: (4,2)         84: (4,2,1,1)        136: (7,1,1,1)
     22: (5,1)         85: (7,3)            144: (2,2,1,1,1,1)
     25: (3,3)         87: (10,2)           146: (21,1)
     34: (7,1)         88: (5,1,1,1)        155: (11,3)
     36: (2,2,1,1)     90: (3,2,2,1)        156: (6,2,1,1)
     39: (6,2)         91: (6,4)            159: (16,2)
     40: (3,1,1,1)     94: (15,1)           160: (3,1,1,1,1,1)
     46: (9,1)        100: (3,3,1,1)        166: (23,1)
     49: (4,4)        111: (12,2)           169: (6,6)
     55: (5,3)        115: (9,3)            183: (18,2)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is A056798.
These partitions are counted by A236913.
The odd version is A160786 (A340931).
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Squares (A000290) is a subsequence.
Not a subsequence of A329609 (30 is the first term of A329609 not occurring here, and 210 is the first term here not present in A329609).
Positions of even terms in A373381.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
    isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022

Formula

Intersection of A028260 and A300061.

A340832 Number of factorizations of n into factors > 1 with odd least factor.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 1, 2, 1, 0, 2, 0, 2, 2, 1, 0, 2, 1, 1, 1, 1, 0, 4, 0, 1, 2, 2, 1, 2, 0, 1, 2, 2, 1, 2, 0, 1, 3, 1, 0, 4, 0, 2, 1, 1, 0, 2, 2, 1, 3, 1, 0, 4, 0, 2, 1, 1, 1, 5, 0, 1, 3, 2, 0, 2, 0, 1, 5, 2, 0, 2, 0, 2, 2, 1, 1, 4, 1, 1, 1, 1, 0, 5, 0, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Examples

			The a(n) factorizations for n = 45, 108, 135, 180, 252:
  (45)     (3*36)     (135)      (3*60)     (3*84)
  (5*9)    (9*12)     (3*45)     (5*36)     (7*36)
  (3*15)   (3*4*9)    (5*27)     (9*20)     (9*28)
  (3*3*5)  (3*6*6)    (9*15)     (5*6*6)    (3*3*28)
           (3*3*12)   (3*5*9)    (3*3*20)   (3*4*21)
           (3*3*3*4)  (3*3*15)   (3*4*15)   (3*6*14)
                      (3*3*3*5)  (3*5*12)   (3*7*12)
                                 (3*6*10)   (3*3*4*7)
                                 (3*3*4*5)
		

Crossrefs

Positions of 0's are A340854.
Positions of nonzero terms are A340855.
The version for partitions is A026804.
Odd-length factorizations are counted by A339890.
The version looking at greatest factor is A340831.
- Factorizations -
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340607 counts factorizations with odd length and greatest factor.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts.
A026424 lists numbers with odd Omega.
A027193 counts partitions of odd length.
A058695 counts partitions of odd numbers (A300063).
A066208 lists numbers with odd-indexed prime factors.
A067659 counts strict partitions of odd length (A030059).
A174726 counts ordered factorizations of odd length.
A244991 lists numbers whose greatest prime index is odd.
A340692 counts partitions of odd rank.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ@*Min]],{n,100}]
  • PARI
    A340832(n, m=n, fc=1) = if(1==n, (m%2)&&!fc, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A340832(n/d, d, 0*fc))); (s)); \\ Antti Karttunen, Dec 13 2021

Extensions

Data section extended up to 108 terms by Antti Karttunen, Dec 13 2021

A340932 Numbers whose least prime index is odd. Heinz numbers of integer partitions whose last part is odd.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 54, 55, 56, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 80, 82, 83, 84, 85, 86, 88, 90, 92, 94, 95, 96, 97
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. 1 has no prime indices so is not included.

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}           24: {1,1,1,2}       46: {1,9}
      4: {1,1}         25: {3,3}           47: {15}
      5: {3}           26: {1,6}           48: {1,1,1,1,2}
      6: {1,2}         28: {1,1,4}         50: {1,3,3}
      8: {1,1,1}       30: {1,2,3}         52: {1,1,6}
     10: {1,3}         31: {11}            54: {1,2,2,2}
     11: {5}           32: {1,1,1,1,1}     55: {3,5}
     12: {1,1,2}       34: {1,7}           56: {1,1,1,4}
     14: {1,4}         35: {3,4}           58: {1,10}
     16: {1,1,1,1}     36: {1,1,2,2}       59: {17}
     17: {7}           38: {1,8}           60: {1,1,2,3}
     18: {1,2,2}       40: {1,1,1,3}       62: {1,11}
     20: {1,1,3}       41: {13}            64: {1,1,1,1,1,1}
     22: {1,5}         42: {1,2,4}         65: {3,6}
     23: {9}           44: {1,1,5}         66: {1,2,5}
		

Crossrefs

These partitions are counted by A026804.
The case where all prime indices are odd is A066208.
Looking at greatest prime index instead of least gives A244991.
Every term x is a product of A257991(x) elements of A341446.
The complement is {1} \/ A340933, counted by A026805.
A001222 counts prime factors.
A005408 lists odd numbers.
A027193 counts odd-length partitions, ranked by A026424.
A031368 lists odd-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058695 counts partitions of odd numbers, ranked by A300063.
A061395 selects greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Select[Range[100],OddQ[PrimePi[FactorInteger[#][[1,1]]]]&]

Formula

A055396(a(n)) belongs to A005408.
Closed under multiplication.

A356932 Number of multiset partitions of integer partitions of n such that all blocks have odd size.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 24, 42, 74, 130, 224, 383, 653, 1100, 1846, 3079, 5104, 8418, 13827, 22592, 36774, 59613, 96271, 154908, 248441, 397110, 632823, 1005445, 1592962, 2516905, 3966474, 6235107, 9777791, 15297678, 23880160, 37196958, 57819018, 89691934, 138862937
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 13 multiset partitions:
  {1}  {2}     {3}        {4}           {5}
       {1}{1}  {111}      {112}         {113}
               {1}{2}     {1}{3}        {122}
               {1}{1}{1}  {2}{2}        {1}{4}
                          {1}{111}      {2}{3}
                          {1}{1}{2}     {11111}
                          {1}{1}{1}{1}  {1}{112}
                                        {2}{111}
                                        {1}{1}{3}
                                        {1}{2}{2}
                                        {1}{1}{111}
                                        {1}{1}{1}{2}
                                        {1}{1}{1}{1}{1}
		

Crossrefs

Partitions with odd multiplicities are counted by A055922.
Odd-length multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other types: A050330, A356933, A356934, A356935.
Other conditions: A001970, A006171, A007294, A089259, A107742, A356941.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],OddQ[Times@@Length/@#]&]],{n,0,8}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(1/prod(k=1, n, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A027193(k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(13) and beyond from Andrew Howroyd, Dec 30 2022

A182747 Bisection (odd part) of number of partitions that do not contain 1 as a part A002865.

Original entry on oeis.org

0, 1, 2, 4, 8, 14, 24, 41, 66, 105, 165, 253, 383, 574, 847, 1238, 1794, 2573, 3660, 5170, 7245, 10087, 13959, 19196, 26252, 35717, 48342, 65121, 87331, 116600, 155038, 205343, 270928, 356169, 466610, 609237, 792906, 1028764, 1330772, 1716486, 2207851
Offset: 0

Views

Author

Omar E. Pol, Dec 01 2010

Keywords

Comments

a(n+1) = number of partitions p of 2n such that (number of parts of p) is a part of p, for n >=0. - Clark Kimberling, Mar 02 2014

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<2 then 0
        else b(n, i-1) +b(n-i, i)
          fi
        end:
    a:= n-> b(2*n+1, 2*n+1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 01 2010
  • Mathematica
    f[n_] := Table[PartitionsP[2 k + 1] - PartitionsP[2 k], {k, 0, n}] (* George Beck, Aug 14 2011 *)
    (* also *)
    Table[Count[IntegerPartitions[2 n], p_ /; MemberQ[p, Length[p]]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *)
    b[n_, i_] := b[n, i] = Which[n<0, 0, n == 0, 1, i<2, 0, True, b[n, i-1] + b[n-i, i]]; a[n_] := b[2*n+1, 2*n+1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

a(n) = p(2*n+1)-p(2*n), where p is the partition function, A000041. - George Beck, Aug 14 2011

Extensions

More terms from Alois P. Heinz, Dec 01 2010

A340603 Heinz numbers of integer partitions of odd rank.

Original entry on oeis.org

3, 4, 7, 10, 12, 13, 15, 16, 18, 19, 22, 25, 27, 28, 29, 33, 34, 37, 40, 42, 43, 46, 48, 51, 52, 53, 55, 60, 61, 62, 63, 64, 69, 70, 71, 72, 76, 77, 78, 79, 82, 85, 88, 89, 90, 93, 94, 98, 100, 101, 105, 107, 108, 112, 113, 114, 115, 116, 117, 118, 119, 121
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
      3: (2)           33: (5,2)           63: (4,2,2)
      4: (1,1)         34: (7,1)           64: (1,1,1,1,1,1)
      7: (4)           37: (12)            69: (9,2)
     10: (3,1)         40: (3,1,1,1)       70: (4,3,1)
     12: (2,1,1)       42: (4,2,1)         71: (20)
     13: (6)           43: (14)            72: (2,2,1,1,1)
     15: (3,2)         46: (9,1)           76: (8,1,1)
     16: (1,1,1,1)     48: (2,1,1,1,1)     77: (5,4)
     18: (2,2,1)       51: (7,2)           78: (6,2,1)
     19: (8)           52: (6,1,1)         79: (22)
     22: (5,1)         53: (16)            82: (13,1)
     25: (3,3)         55: (5,3)           85: (7,3)
     27: (2,2,2)       60: (3,2,1,1)       88: (5,1,1,1)
     28: (4,1,1)       61: (18)            89: (24)
     29: (10)          62: (11,1)          90: (3,2,2,1)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
These partitions are counted by A340692.
The complement is A340602, counted by A340601.
The case of positive rank is A340604.
- Rank -
A001222 gives number of prime indices.
A047993 counts partitions of rank 0 (A106529).
A061395 gives maximum prime index.
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts (A066208).
A027193 counts partitions of odd length (A026424).
A027193 (also) counts partitions of odd maximum (A244991).
A058695 counts partitions of odd numbers (A300063).
A067659 counts strict partitions of odd length (A030059).
A160786 counts odd-length partitions of odd numbers (A300272).
A339890 counts factorizations of odd length.
A340102 counts odd-length factorizations into odd factors.
A340385 counts partitions of odd length and maximum (A340386).

Programs

  • Mathematica
    Select[Range[100],OddQ[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]&]

Formula

A061395(a(n)) - A001222(a(n)) is odd.

A340931 Heinz numbers of integer partitions of odd numbers into an odd number of parts.

Original entry on oeis.org

2, 5, 8, 11, 17, 18, 20, 23, 31, 32, 41, 42, 44, 45, 47, 50, 59, 67, 68, 72, 73, 78, 80, 83, 92, 97, 98, 99, 103, 105, 109, 110, 114, 124, 125, 127, 128, 137, 149, 153, 157, 162, 164, 167, 168, 170, 174, 176, 179, 180, 182, 188, 191, 195, 197, 200, 207, 211
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This is a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with the corresponding partitions begins:
      2: (1)             50: (3,3,1)        109: (29)
      5: (3)             59: (17)           110: (5,3,1)
      8: (1,1,1)         67: (19)           114: (8,2,1)
     11: (5)             68: (7,1,1)        124: (11,1,1)
     17: (7)             72: (2,2,1,1,1)    125: (3,3,3)
     18: (2,2,1)         73: (21)           127: (31)
     20: (3,1,1)         78: (6,2,1)        128: (1,1,1,1,1,1,1)
     23: (9)             80: (3,1,1,1,1)    137: (33)
     31: (11)            83: (23)           149: (35)
     32: (1,1,1,1,1)     92: (9,1,1)        153: (7,2,2)
     41: (13)            97: (25)           157: (37)
     42: (4,2,1)         98: (4,4,1)        162: (2,2,2,2,1)
     44: (5,1,1)         99: (5,2,2)        164: (13,1,1)
     45: (3,2,2)        103: (27)           167: (39)
     47: (15)           105: (4,3,2)        168: (4,2,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A160786.
The even version is A236913 (A340784).
The case of where the prime indices are also odd is A300272.
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A027193 counts odd-length partitions (A026424).
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&OddQ[Total[primeMS[#]]]&]

Formula

Intersection of A026424 and A300063.
Previous Showing 21-30 of 59 results. Next