cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 84 results. Next

A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2023

Keywords

Examples

			The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
    0   1
    1   1
    2   2   1
    5   3   3
    8   4   9   1
   17   6  16   1   2
   24   7  33   4   9
   46  11  52   3  18   1   4
   64  12  91   6  38   3  15   1   1
  107  17 138   9  68   2  28   2  12   0   2
  147  19 219  12 117   6  56   3  34   2   9   0   3
Row n = 4 counts the following partitions:
  (8)     (44)        (431)      (221111)
  (71)    (3311)      (422)
  (62)    (2222)      (4211)
  (611)   (11111111)  (41111)
  (53)                (3221)
  (521)               (32111)
  (5111)              (311111)
  (332)               (22211)
                      (2111111)
		

Crossrefs

Row sums w/o the first column are A002219, ranks A357976, strict A237258.
Column k = 0 is A006827.
Row sums are A058696.
Column k = 1 is A108917.
The corresponding rank statistic is A357879 (without empty rows).
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, ranks A366321.
A182616 counts partitions of 2n with at least one odd part, ranks A366530.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sums of partitions, rank statistic A299701.
A365543 counts partitions of n with a submultiset summing to k.

Programs

  • Mathematica
    t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
    Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]

Formula

T(n,1) = A108917(n).

A340785 Number of factorizations of 2n into even factors > 1.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 11, 1, 2, 1, 6, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 12, 1, 3, 1, 4, 1, 3, 1, 7, 1, 2, 1, 7, 1, 2, 1, 15, 1, 3, 1, 4, 1, 3, 1, 12, 1, 2, 1, 4, 1, 3, 1, 12, 1, 2, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Examples

			The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are:
  4    8      16       24     32         64           72      96
  2*2  2*4    2*8      4*6    4*8        8*8          2*36    2*48
       2*2*2  4*4      2*12   2*16       2*32         4*18    4*24
              2*2*4    2*2*6  2*2*8      4*16         6*12    6*16
              2*2*2*2         2*4*4      2*4*8        2*6*6   8*12
                              2*2*2*4    4*4*4        2*2*18  2*6*8
                              2*2*2*2*2  2*2*16               4*4*6
                                         2*2*2*8              2*2*24
                                         2*2*4*4              2*4*12
                                         2*2*2*2*4            2*2*4*6
                                         2*2*2*2*2*2          2*2*2*12
                                                              2*2*2*2*6
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The version for partitions is A035363 (A066207).
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum.
A340601 counts partitions of even rank (A340602).
Even bisection of A349906.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[#,OddQ]=={}&]],{n,2,100,2}]
  • PARI
    A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s));
    A340785(n) = A349906(2*n); \\ Antti Karttunen, Dec 13 2021

Formula

a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021

A095268 Number of distinct degree sequences among all n-vertex graphs with no isolated vertices.

Original entry on oeis.org

1, 0, 1, 2, 7, 20, 71, 240, 871, 3148, 11655, 43332, 162769, 614198, 2330537, 8875768, 33924859, 130038230, 499753855, 1924912894, 7429160296, 28723877732, 111236423288, 431403470222, 1675316535350, 6513837679610, 25354842100894, 98794053269694, 385312558571890, 1504105116253904, 5876236938019298, 22974847399695092
Offset: 0

Views

Author

Eric W. Weisstein, May 31 2004

Keywords

Comments

A002494 is the number of graphs on n nodes with no isolated points and A095268 is the number of these graphs having distinct degree sequences.
Now that more terms have been computed, we can see that this is not the self-convolution of any integer sequence. - Paul D. Hanna, Aug 18 2006
Is it true that a(n+1)/a(n) tends to 4? Is there a heuristic argument why this might be true? - Gordon F. Royle, Aug 29 2006
Previous values a(30) = 5876236938019300 from Lorand Lucz, Jul 07 2013 and a(31) = 22974847474172100 from Lorand Lucz, Sep 03 2013 are wrong. New values a(30) and a(31) independently computed Kai Wang and Axel Kohnert. - Vaclav Kotesovec, Apr 15 2016
In the article by A. Iványi, G. Gombos, L. Lucz, T. Matuszka: "Parallel enumeration of degree sequences of simple graphs II" is in the tables on pages 258 and 261 a wrong value a(31) = 22974847474172100, but in the abstract another wrong value a(31) = 22974847474172374. - Vaclav Kotesovec, Apr 15 2016
The asymptotic formula given below confirms that a(n+1)/a(n) tends to 4. - Tom Johnston, Jan 18 2023

Examples

			a(4) = 7 because a 4-vertex graph with no isolated vertices can have degree sequence 1111, 2211, 2222, 3111, 3221, 3322 or 3333.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(3) = 7 sorted degree sequences (empty column indicated by dot):
  ()  .  (1,1)  (2,1,1)  (1,1,1,1)
                (2,2,2)  (2,2,1,1)
                         (2,2,2,2)
                         (3,1,1,1)
                         (3,2,2,1)
                         (3,3,2,2)
                         (3,3,3,3)
For example, the complete graph K_4 has degrees y = (3,3,3,3), so y is counted under a(4). On the other hand, the only half-loop-graphs (up to isomorphism) with degrees y = (4,2,2,1) are: {(1),(1,2),(1,3),(1,4),(2,3)} and {(1),(2),(3),(1,2),(1,3),(1,4)}; and since neither of these is a graph (due to having half-loops), y is not counted under a(4).
(End)
		

Crossrefs

Cf. A002494, A004250, A007721 (analog for connected graphs), A271831.
Counting the same partitions by sum gives A000569.
Allowing isolated nodes gives A004251.
The version with half-loops is A029889, with covering case A339843.
Covering simple graphs are ranked by A309356 and A320458.
Graphical partitions are ranked by A320922.
The version with loops is A339844, with covering case A339845.
A006125 counts simple graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A339659 is a triangle counting graphical partitions.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

a(n) ~ c * 4^n / n^(3/4) for some c > 0. Computational estimates suggest c ≈ 0.074321. - Tom Johnston, Jan 18 2023

Extensions

Edited by N. J. A. Sloane, Aug 26 2006
More terms from Gordon F. Royle, Aug 21 2006
a(21) and a(22) from Frank Ruskey, Aug 29 2006
a(23) from Frank Ruskey, Aug 31 2006
a(24)-a(29) from Matuszka Tamás, Jan 10 2013
a(30)-a(31) from articles by Kai Wang and Axel Kohnert, Apr 15 2016
a(0) = 1 and a(1) = 0 prepended by Gus Wiseman, Dec 31 2020

A182746 Bisection (even part) of number of partitions that do not contain 1 as a part A002865.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 34, 55, 88, 137, 210, 320, 478, 708, 1039, 1507, 2167, 3094, 4378, 6153, 8591, 11914, 16424, 22519, 30701, 41646, 56224, 75547, 101066, 134647, 178651, 236131, 310962, 408046, 533623, 695578, 903811, 1170827, 1512301, 1947826, 2501928
Offset: 0

Views

Author

Omar E. Pol, Dec 01 2010

Keywords

Comments

a(n+1) is the number of partitions p of 2n-1 such that (number of parts of p) is a part of p, for n >=0. - Clark Kimberling, Mar 02 2014

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<2 then 0
        else b(n, i-1) +b(n-i, i)
          fi
        end:
    a:= n-> b(2*n, 2*n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 01 2010
  • Mathematica
    Table[Count[IntegerPartitions[2 n -1], p_ /; MemberQ[p, Length[p]]], {n, 20}]   (* Clark Kimberling, Mar 02 2014 *)
    b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i<2, 0, True, b[n, i-1] + b[n-i, i]]; a[n_] := b[2*n, 2*n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
    a[n_] := PartitionsP[2*n] - PartitionsP[2*n - 1]; Table[a[n], {n, 0, 40}] (* George Beck, Jun 05 2017 *)
  • PARI
    a(n)=numbpart(2*n)-numbpart(2*n-1) \\ Charles R Greathouse IV, Jun 06 2017

Formula

a(n) = p(2*n) - p(2*n-1), where p is the partition function, A000041. - George Beck, Jun 05 2017 [Shifted by Georg Fischer, Jun 20 2022]

Extensions

More terms from Alois P. Heinz, Dec 01 2010

A339742 Number of factorizations of n into distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 3, 2, 2, 2, 0, 1, 3, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 4, 1, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes.

Examples

			The a(n) factorizations for n = 6, 30, 60, 210, 420 are respectively 2, 4, 3, 10, 9:
  (6)    (5*6)    (6*10)    (6*35)     (2*6*35)
  (2*3)  (2*15)   (2*5*6)   (10*21)    (5*6*14)
         (3*10)   (2*3*10)  (14*15)    (6*7*10)
         (2*3*5)            (5*6*7)    (2*10*21)
                            (2*3*35)   (2*14*15)
                            (2*5*21)   (2*5*6*7)
                            (2*7*15)   (3*10*14)
                            (3*5*14)   (2*3*5*14)
                            (3*7*10)   (2*3*7*10)
                            (2*3*5*7)
		

Crossrefs

Dirichlet convolution of A008966 with A339661.
A008966 allows only primes.
A339661 does not allow primes, only squarefree semiprimes.
A339740 lists the positions of zeros.
A339741 lists the positions of positive terms.
A339839 allows nonsquarefree semiprimes.
A339887 is the non-strict version.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339840 cannot be factored into distinct primes or semiprimes.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050320 into squarefree numbers.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339742 [this sequence] into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A000569 counts graphical partitions (A320922).
- A058696 counts all partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A339656 counts loop-graphical partitions (A339658).
-
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 has no additional conditions (A028260).
- A338914/A339562 can be partitioned into edges (A320911).
- A338916/A339563 can be partitioned into distinct pairs (A320912).
- A339559/A339564 cannot be partitioned into distinct edges (A320894).
- A339560/A339619 can be partitioned into distinct edges (A339561).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[sqps[n]],{n,100}]
  • PARI
    A353471(n) = (numdiv(n)==2*omega(n));
    A339742(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA353471(d), s += A339742(n/d, d))); (s)); \\ Antti Karttunen, May 02 2022

Formula

a(n) = Sum_{d|n squarefree} A339661(n/d).

Extensions

More terms from Antti Karttunen, May 02 2022

A344414 Heinz numbers of integer partitions whose sum is at most twice their greatest part.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, May 19 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}        20: {1,1,3}    39: {2,6}
     3: {2}        21: {2,4}      40: {1,1,1,3}
     4: {1,1}      22: {1,5}      41: {13}
     5: {3}        23: {9}        42: {1,2,4}
     6: {1,2}      25: {3,3}      43: {14}
     7: {4}        26: {1,6}      44: {1,1,5}
     9: {2,2}      28: {1,1,4}    46: {1,9}
    10: {1,3}      29: {10}       47: {15}
    11: {5}        30: {1,2,3}    49: {4,4}
    12: {1,1,2}    31: {11}       51: {2,7}
    13: {6}        33: {2,5}      52: {1,1,6}
    14: {1,4}      34: {1,7}      53: {16}
    15: {2,3}      35: {3,4}      55: {3,5}
    17: {7}        37: {12}       56: {1,1,1,4}
    19: {8}        38: {1,8}      57: {2,8}
For example, 56 has prime indices {1,1,1,4} and 7 <= 2*4, so 56 is in the sequence. On the other hand, 224 has prime indices {1,1,1,1,1,4} and 9 > 2*4, so 224 is not in the sequence.
		

Crossrefs

These partitions are counted by A025065 but are different from palindromic partitions, which have Heinz numbers A265640.
The opposite even-weight version appears to be A320924, counted by A209816.
The opposite version appears to be A322109, counted by A110618.
The case of equality in the conjugate version is A340387.
The conjugate opposite version is A344291, counted by A110618.
The conjugate opposite 5-smooth case is A344293, counted by A266755.
The conjugate version is A344296, also counted by A025065.
The case of equality is A344415.
The even-weight case is A344416.
A001222 counts prime factors with multiplicity.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max[primeMS[#]]>=Total[primeMS[#]]/2&]

Formula

A056239(a(n)) <= 2*A061395(a(n)).

A340605 Heinz numbers of integer partitions of even positive rank.

Original entry on oeis.org

5, 11, 14, 17, 21, 23, 26, 31, 35, 38, 39, 41, 44, 47, 49, 57, 58, 59, 65, 66, 67, 68, 73, 74, 83, 86, 87, 91, 92, 95, 97, 99, 102, 103, 104, 106, 109, 110, 111, 122, 124, 127, 129, 133, 137, 138, 142, 143, 145, 149, 152, 153, 154, 156, 157, 158, 159, 164, 165
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
      5: (3)         57: (8,2)       97: (25)
     11: (5)         58: (10,1)      99: (5,2,2)
     14: (4,1)       59: (17)       102: (7,2,1)
     17: (7)         65: (6,3)      103: (27)
     21: (4,2)       66: (5,2,1)    104: (6,1,1,1)
     23: (9)         67: (19)       106: (16,1)
     26: (6,1)       68: (7,1,1)    109: (29)
     31: (11)        73: (21)       110: (5,3,1)
     35: (4,3)       74: (12,1)     111: (12,2)
     38: (8,1)       83: (23)       122: (18,1)
     39: (6,2)       86: (14,1)     124: (11,1,1)
     41: (13)        87: (10,2)     127: (31)
     44: (5,1,1)     91: (6,4)      129: (14,2)
     47: (15)        92: (9,1,1)    133: (8,4)
     49: (4,4)       95: (8,3)      137: (33)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
Allowing any positive rank gives A064173 (A340787).
The odd version is counted by A101707 (A340604).
These partitions are counted by A101708.
The not necessarily positive case is counted by A340601 (A340602).
A001222 counts prime indices.
A061395 gives maximum prime index.
A072233 counts partitions by sum and length.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A064173 counts partitions of negative rank (A340788).
A064174 counts partitions of nonnegative rank (A324562).
A064174 (also) counts partitions of nonpositive rank (A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A340692 counts partitions of odd rank (A340603).
- Even -
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[100],EvenQ[rk[#]]&&rk[#]>0&]

Formula

A061395(a(n)) - A001222(a(n)) is even and positive.

A154798 Even partition numbers of even numbers.

Original entry on oeis.org

2, 22, 42, 1002, 2436, 3718, 5604, 12310, 37338, 53174, 105558, 204226, 715220, 1300156, 1741630, 2323520, 4087968, 7089500, 12132164, 15796476, 26543660, 34262962, 92669720, 118114304, 150198136, 190569292, 384276336, 483502844
Offset: 1

Views

Author

Omar E. Pol, Jan 26 2009

Keywords

Comments

Even numbers in A058696.

Crossrefs

Programs

  • Maple
    aa:= proc(n, i) if n=0 then 1 elif n<0 or i=0 then 0 else aa(n,i):= aa(n, i-1) +aa(n-i, i) fi end: a:= proc(n) local k; if n>1 then a(n-1) fi; for k from `if`(n=1, 0, b(n-1)+2) by 2 while irem(aa(k, k), 2)=1 do od; b(n):= k; aa(k, k) end: seq(a(n), n=1..40); # Alois P. Heinz, Jul 28 2009
  • Mathematica
    Select[Table[PartitionsP[n], {n, 0, 200, 2}], EvenQ] (* Jean-François Alcover, Aug 28 2015 *)
  • PARI
    select(x->!(x%2), vector(80, n, numbpart(2*n))) \\ Michel Marcus, Aug 28 2015

Extensions

More terms from Alois P. Heinz, Jul 28 2009

A344743 Number of integer partitions of 2n with reverse-alternating sum < 0.

Original entry on oeis.org

0, 0, 1, 3, 7, 15, 29, 54, 96, 165, 275, 449, 716, 1123, 1732, 2635, 3955, 5871, 8620, 12536, 18065, 25821, 36617, 51560, 72105, 100204, 138417, 190134, 259772, 353134, 477734, 643354, 862604, 1151773, 1531738, 2029305, 2678650, 3523378, 4618835, 6035240, 7861292
Offset: 0

Views

Author

Gus Wiseman, Jun 09 2021

Keywords

Comments

Conjecture: a(n) >= A236914.
The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. So a(n) is the number of even-length partitions of 2n with at least one odd conjugate part. By conjugation, this is also the number of partitions of 2n with greatest part even and at least one odd part.
The alternating sum of a partition is never < 0, so the non-reverse version is A000004.

Examples

			The a(2) = 1 through a(5) = 15 partitions:
  (31)  (42)    (53)      (64)
        (51)    (62)      (73)
        (3111)  (71)      (82)
                (3221)    (91)
                (4211)    (3331)
                (5111)    (4222)
                (311111)  (4321)
                          (5221)
                          (5311)
                          (6211)
                          (7111)
                          (322111)
                          (421111)
                          (511111)
                          (31111111)
		

Crossrefs

The ordered version (compositions not partitions) appears to be A008549.
The Heinz numbers are A119899 /\ A300061.
Even bisection of A344608.
The complementary partitions of 2n are counted by A344611.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001523 counts unimodal compositions (partial sums: A174439).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    sats[y_] := Sum[(-1)^(i - Length[y])*y[[i]], {i, Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]<0&]],{n,0,30,2}]

Formula

a(n) = A058696(n) - A344611(n).
a(n) = sum of left half of even-indexed rows of A344612.

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A321728 Number of integer partitions of n whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 28, 37, 50
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

First differs from A000701 at a(11) = 28, A000701(11) = 27
A vertical section is a partial Young diagram with at most one square in each row.
Conjecture: a(n) is the number of non-half-loop-graphical partitions of n. An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex, to be distinguished from a full loop, which has two equal vertices.

Examples

			The a(2) = 1 through a(9) = 14 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the non-half-loop-graphical partitions up to n = 9:
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (31)  (32)  (33)   (43)   (44)    (54)
                  (41)  (42)   (52)   (53)    (63)
                        (51)   (61)   (62)    (72)
                        (411)  (331)  (71)    (81)
                               (421)  (422)   (432)
                               (511)  (431)   (441)
                                      (521)   (522)
                                      (611)   (531)
                                      (5111)  (621)
                                              (711)
                                              (4311)
                                              (5211)
                                              (6111)
For example, a complete list of all half/full-loop-graphs with degrees y = (4,3,1) is the following:
  {{1,1},{1,2},{1,3},{2,2}}
  {{1},{2},{1,1},{1,2},{2,3}}
  {{1},{2},{1,1},{1,3},{2,2}}
  {{1},{3},{1,1},{1,2},{2,2}}
None of these is a half-loop-graph, as they have full loops (x,x), so y is counted under a(8).
		

Crossrefs

The complement is counted by A321729.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are A029889 or A339843 (covering).
The version for full loops is A339655.
A027187 counts partitions of even length, with Heinz numbers A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs, ranked by A340018/A340019.
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Length[Select[IntegerPartitions[n],Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]=={}&]],{n,8}]

Formula

a(n) is the number of integer partitions y of n such that the coefficient of m(y) in e(y) is zero, where m is monomial and e is elementary symmetric functions.
a(n) = A000041(n) - A321729(n).
Previous Showing 41-50 of 84 results. Next