A199301 a(n) = (2n+1)*8^n.
1, 24, 320, 3584, 36864, 360448, 3407872, 31457280, 285212672, 2550136832, 22548578304, 197568495616, 1717986918400, 14843406974976, 127543348822016, 1090715534753792, 9288674231451648, 78812993478983680, 666532744850833408, 5620492334958379008, 47269781688880726016
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-64).
Crossrefs
Programs
-
Magma
[(2*n+1)*8^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
-
Maple
A199301:=n->(2*n+1)*8^n: seq(A199301(n), n=0..20); # Wesley Ivan Hurt, Oct 30 2014
-
Mathematica
Table[(2 n + 1)*8^n, {n, 0, 20}] (* Wesley Ivan Hurt, Oct 30 2014 *)
-
PARI
a(n) = (2*n+1)*8^n \\ Amiram Eldar, Dec 10 2022
Formula
a(n) = 16*a(n-1)-64*a(n-2).
G.f.: (1+8*x)/(1-8*x)^2.
a(n) = 8*(a(n-1)+2^(3*n-2)). - Vincenzo Librandi, Nov 05 2011
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(8)*arccoth(sqrt(8)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(8)*arccot(sqrt(8)). (End)
E.g.f.: exp(8*x)*(1 + 16*x). - Stefano Spezia, May 09 2023
Extensions
a(18) corrected by Vincenzo Librandi, Nov 05 2011
Comments