cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A255807 E.g.f.: exp(Sum_{k>=1} k^2 * x^k).

Original entry on oeis.org

1, 1, 9, 79, 841, 10821, 162601, 2777419, 52960209, 1112813641, 25509407401, 632772511911, 16870674740569, 480717000225229, 14568646143888201, 467640968478534691, 15841420612530533281, 564519727866573515409, 21102817266052772063689, 825435163723385398719871
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

In general, if e.g.f. = exp(Sum_{k>=1} k^m * x^k) and m>0, then a(n) ~ (m+2)^(-1/2) * Gamma(m+2)^(1/(2*m+4)) * exp((m+2)/(m+1) * Gamma(m+2)^(1/(m+2)) * n^((m+1)/(m+2)) + zeta(-m) - n) * n^(n - 1/(2*m+4)).
It appears that the sequence a(n) taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k: if true, then the sequence a(n) taken modulo k would be periodic with period dividing k. - Peter Bala, Nov 14 2017
The above conjecture is true - see the Bala link. - Peter Bala, Jan 20 2018

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[Series[Exp[Sum[k^2*x^k,{k,1,nmax}]],{x,0,nmax}],x] * Range[0,nmax]!
    nn = 20; Range[0, nn]! * CoefficientList[Series[Product[Exp[k^2*x^k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 21 2016 *)

Formula

E.g.f.: exp(x*(1+x)/(1-x)^3).
a(n) ~ 2^(-7/8) * 3^(1/8) * n^(n-1/8) * exp(2^(9/4) * 3^(-3/4) * n^(3/4) - n).
a(n) = n!*y(n) where y(0)=1 and y(n)=(Sum_{k=0..n-1} (n-k)^3*y(k))/n for n>=1. - Benedict W. J. Irwin, Jun 02 2016
a(n) = (4*n-3)*a(n-1) - 2*(n-1)*(3*n-8)*a(n-2) + (n-1)*(n-2)*(4*n-11)*a(n-3) - (n-1)*(n-2)*(n-3)*(n-4)*a(n-4). - Peter Bala, Nov 12 2017
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(J_3(k)/k), where J_3() is the Jordan function (A059376). - Ilya Gutkovskiy, May 25 2019

A059382 Product J_3(i), i=1..n.

Original entry on oeis.org

1, 7, 182, 10192, 1263808, 230013056, 78664465152, 35241680388096, 24739659632443392, 21474024560960864256, 28560452666077949460480, 41584019081809494414458880, 91318505903653649734151700480, 218616503133346837463559170949120
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^3 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A059382[n_]:=Times@@(JordanTotient[#, 3]&/@Range[n]); (* Enrique Pérez Herrero, Aug 06 2011 *)

A069092 Jordan function J_7(n).

Original entry on oeis.org

1, 127, 2186, 16256, 78124, 277622, 823542, 2080768, 4780782, 9921748, 19487170, 35535616, 62748516, 104589834, 170779064, 266338304, 410338672, 607159314, 893871738, 1269983744, 1800262812, 2474870590, 3404825446, 4548558848
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Cf. A069091 (J_6), A069092 (J_7), A069093 (J_8), A069094 (J_9), A069095 (J_10). [Enrique Pérez Herrero, Nov 02 2010]
Cf. A013666.

Programs

  • Mathematica
    JordanTotient[n_, k_: 1] := DivisorSum[n, (#^k)*MoebiusMu[n/# ] &] /; (n > 0) && IntegerQ[n]
    A069092[n_] := JordanTotient[n, 7]; (* Enrique Pérez Herrero, Nov 02 2010 *)
    f[p_, e_] := p^(7*e) - p^(7*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, d^7*moebius(n/d)), ", "))

Formula

a(n) = Sum_{d|n} d^7*mu(n/d).
Multiplicative with a(p^e) = p^(7e)-p^(7(e-1)).
Dirichlet generating function: zeta(s-7)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^7*Product_{distinct primes p dividing n} (1-1/p^7). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ 4725*n^8 / (4*Pi^8). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^7 = 1/zeta(8).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^7/(p^7-1)^2) = 1.0084115178... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A_7(x^n)/(1 - x^n)^8 = x + 127*x^2 + 2186*x^3 + 16256*x^4 + 78124*x^5 + ..., where A_7(x) = x + 120*x^2 + 1191*x^3 + 2416*x^4 + 1191*x^5 + 120*x^6 + x^7 is the 7th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022

A069094 Jordan function J_9(n).

Original entry on oeis.org

1, 511, 19682, 261632, 1953124, 10057502, 40353606, 133955584, 387400806, 998046364, 2357947690, 5149441024, 10604499372, 20620692666, 38441386568, 68585259008, 118587876496, 197961811866, 322687697778, 510999738368
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Cf. A013668.

Programs

  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 9]; Array[f, 22]
    f[p_, e_] := p^(9*e) - p^(9*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^9*moebius(n/d)),","))

Formula

a(n) = Sum_{d|n} d^9*mu(n/d).
Multiplicative with a(p^e) = p^(9e)-p^(9(e-1)).
Dirichlet generating function: zeta(s-9)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^9*Product_{distinct primes p dividing n} (1-1/p^9). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ 18711*n^10 / (2*Pi^10). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^9 = 1/zeta(10).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^9/(p^9-1)^2) = 1.0020122252... (End)

A368743 a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^3.

Original entry on oeis.org

1, 11, 35, 100, 149, 385, 391, 848, 1017, 1639, 1451, 3500, 2365, 4301, 5215, 6976, 5201, 11187, 7219, 14900, 13685, 15961, 12695, 29680, 19225, 26015, 28107, 39100, 25229, 57365, 30751, 56576, 50785, 57211, 58259, 101700, 52021, 79409, 82775, 126352
Offset: 1

Views

Author

Peter Bala, Jan 20 2024

Keywords

Crossrefs

Programs

  • Maple
    seq( add(add(igcd(i, j, n)^3, i = 1..n), j = 1..n), n = 1..50);
    # faster program for large n
    with(numtheory):
    A007434 := proc(n) add(d^2*mobius(n/d), d in divisors(n)) end proc:
    seq( add(d^3*A007434(n/d), d in divisors(n)), n = 1..500);
  • Mathematica
    f[p_, e_] := p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 29 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1));} \\ Amiram Eldar, Jan 29 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A368743(n): return prod(p**(e-1<<1)*(p**e*(p*(q:=p+1)+1)-q) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

a(n) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n)^2.
a(n) = Sum_{d divides n} d^3 * J_2(n/d) = Sum_{d divides n} d^2 * J_3(n/d), where the Jordan totient functions J_2(n) = A007434(n) and J_3(n) = A059376(n).
Dirichlet g.f.: zeta(s-2) * zeta(s-3)/zeta(s).
a(n) is a multiplicative function: for prime p, a(p^k) = p^(3*k-2)*(p^2 + p + 1) - p^(2*k-2)*(p + 1).
Sum_{k=1..n} a(k) ~ c * n^4, where c = 15/(4*Pi^2) = 0.379954... . - Amiram Eldar, Jan 29 2024
a(n) = Sum_{d divides n} mobius(n/d) * d^2 * sigma(d). - Peter Bala, Jan 29 2024

A263825 Total number c_{pi_1(B_1)}(n) of n-coverings over the first amphicosm.

Original entry on oeis.org

1, 7, 5, 23, 7, 39, 9, 65, 18, 61, 13, 143, 15, 87, 35, 183, 19, 182, 21, 245, 45, 151, 25, 465, 38, 189, 58, 375, 31, 429, 33, 549, 65, 277, 63, 806, 39, 327, 75, 875, 43, 663, 45, 719, 126, 439, 49, 1535, 66, 650, 95, 933, 55, 982, 91, 1425, 105, 637, 61, 2093
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Maple
    A263825 := proc(n)
        local a,l,m,s1,s2,s3,s4 ;
        # Theorem 2
        a := 0 ;
        for l in numtheory[divisors](n) do
            m := n/l ;
            s1 := 0 ;
            for twok in numtheory[divisors](m) do
                if type(twok,'even') then
                    k := twok/2 ;
                    s1 := s1+numtheory[sigma](k)*k ;
                end if;
            end do:
            s2 := 0 ;
            for d in numtheory[divisors](l) do
                s2 := s2+numtheory[mobius](l/d)*d^2*igcd(2,d) ;
            end do:
            s3 := 0 ;
            for k in numtheory[divisors](m) do
                s3 := s3+numtheory[sigma](m/k)*k ;
                if modp(m,2*k) = 0 then
                    s3 := s3-numtheory[sigma](m/2/k)*k ;
                end if;
            end do:
            s4 := 0 ;
            for twok in numtheory[divisors](m) do
                if type(twok,'even') then
                    s4 := s4+numtheory[sigma](m/twok)*twok ;
                    if modp(m,2*twok) = 0 then
                        s4 := s4-numtheory[sigma](m/2/twok)*twok ;
                    end if;
                end if;
            end do:
            a := a+A059376(l)*s1 + s2*s3 + A007434(l)*s4 ;
        end do:
        a/n ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    A007434[n_] := Sum[ MoebiusMu[n/d] * d^2, {d, Divisors[n]}];
    A059376[n_] := Sum[ MoebiusMu[n/d] * d^3, {d, Divisors[n]}];
    A263825[n_] := Module[{a, l, m, s1, s2, s3, s4},
    a = 0;
    Do[m = n/l;
    s1 = 0; Do[If[EvenQ[twok], k = twok/2; s1 = s1 + DivisorSigma[1, k]*k], {twok, Divisors[m]}];
    s2 = 0; Do[s2 = s2 + MoebiusMu[l/d]*d^2*GCD[2, d], {d, Divisors[l]}];
    s3 = 0; Do[s3 = s3 + DivisorSigma[1, m/k]*k ; If[Mod[m, 2*k] == 0, s3 = s3 - DivisorSigma[1, m/2/k]*k], {k, Divisors[m]}];
    s4 = 0; Do[If[EvenQ[twok], s4 = s4 + DivisorSigma[1, m/twok]*twok; If[ Mod[m, 2*twok] == 0, s4 = s4 - DivisorSigma[1, m/2/twok]*twok]], {twok, Divisors[m]}]; a = a + A059376[l]*s1 + s2*s3 + A007434[l]*s4,
    {l, Divisors[n]}]; a/n
    ];
    Array[A263825, 60] (* Jean-François Alcover, Nov 21 2017, after R. J. Mathar *)
  • PARI
    A001001(n) = sumdiv(n, d, sigma(d) * d);
    A007434(n) = sumdiv(n, d, moebius(n\d) * d^2);
    A059376(n) = sumdiv(n, d, moebius(n\d) * d^3);
    A060640(n) = sumdiv(n, d, sigma(n\d) * d);
    EpiPcZn(n) = sumdiv(n, d, moebius(n\d) * d^2 * gcd(d,2));
    S1(n)      = if (n%2, 0, A001001(n\2));
    S11(n)     = A060640(n) - if(n%2, 0, A060640(n\2));
    S21(n)     = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4));
    a(n) = { 1/n * sumdiv(n, d,
      A059376(d) * S1(n\d) + EpiPcZn(d) * S11(n\d) + A007434(d) * S21(n\d));
    };
    vector(60, n, a(n))  \\ Gheorghe Coserea, May 04 2016

A308422 a(n) = n^2 if n odd, 3*n^2/4 if n even.

Original entry on oeis.org

0, 1, 3, 9, 12, 25, 27, 49, 48, 81, 75, 121, 108, 169, 147, 225, 192, 289, 243, 361, 300, 441, 363, 529, 432, 625, 507, 729, 588, 841, 675, 961, 768, 1089, 867, 1225, 972, 1369, 1083, 1521, 1200, 1681, 1323, 1849, 1452, 2025, 1587, 2209, 1728, 2401, 1875, 2601, 2028, 2809, 2187, 3025
Offset: 0

Views

Author

Ilya Gutkovskiy, May 26 2019

Keywords

Comments

Moebius transform of A076577.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^2, 3 n^2/4]; Table[a[n], {n, 0, 55}]
    nmax = 55; CoefficientList[Series[x (1 + 3 x + 6 x^2 + 3 x^3 + x^4)/(1 - x^2)^3, {x, 0, nmax}], x]
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 3, 9, 12, 25}, 56]
    Table[(7 - (-1)^n) n^2/8, {n, 0, 55}]

Formula

G.f.: x*(1 + 3*x + 6*x^2 + 3*x^3 + x^4)/(1 - x^2)^3.
G.f.: Sum_{k>=1} J_2(k)*x^k/(1 - x^(2*k)), where J_2() is the Jordan function (A007434).
E.g.f.: x*((4 + 3*x)*cosh(x) + (3 + 4*x)*sinh(x))/4.
Dirichlet g.f.: zeta(s-2)*(1 - 1/2^s).
a(n) = (7 - (-1)^n)*n^2/8.
a(n) = Sum_{d|n, n/d odd} J_2(d).
a(2*k+1) = A016754(k), a(2*k) = A033428(k).
Sum_{n>=1} 1/a(n) = 13*Pi^2/72 = 1.7820119057522453061...
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi^2/72 = 0.68538919452009434853...
Multiplicative with a(2^e) = 3*2^(2*e-2), and a(p^e) = p^(2*e) for odd primes p. - Amiram Eldar, Oct 26 2020
For n >= 1, n*a(n) = A309337(n) = Sum_{d divides n} (-1)^(d+1) * J(3, n/d), where the Jordan totient function J_3(n) = A059376. - Peter Bala, Jan 21 2024

A309337 a(n) = n^3 if n odd, 3*n^3/4 if n even.

Original entry on oeis.org

0, 1, 6, 27, 48, 125, 162, 343, 384, 729, 750, 1331, 1296, 2197, 2058, 3375, 3072, 4913, 4374, 6859, 6000, 9261, 7986, 12167, 10368, 15625, 13182, 19683, 16464, 24389, 20250, 29791, 24576, 35937, 29478, 42875, 34992, 50653, 41154, 59319, 48000, 68921, 55566, 79507, 63888, 91125
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 24 2019

Keywords

Comments

Moebius transform of A078307.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^3, 3 n^3/4]; Table[a[n], {n, 0, 45}]
    nmax = 45; CoefficientList[Series[x (1 + 6 x + 23 x^2 + 24 x^3 + 23 x^4 + 6 x^5 + x^6)/(1 - x^2)^4, {x, 0, nmax}], x]
    LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {0, 1, 6, 27, 48, 125, 162, 343}, 46]
    Table[n^3 (7 - (-1)^n)/8, {n, 0, 45}]

Formula

G.f.: x * (1 + 6*x + 23*x^2 + 24*x^3 + 23*x^4 + 6*x^5 + x^6)/(1 - x^2)^4.
G.f.: Sum_{k>=1} J_3(k) * x^k/(1 + x^k), where J_3() is the Jordan function (A059376).
Dirichlet g.f.: zeta(s-3) * (1 - 2^(1-s)).
a(n) = n^3 * (7 - (-1)^n)/8.
a(n) = Sum_{d|n} (-1)^(n/d + 1) * J_3(d).
Sum_{n>=1} 1/a(n) = 25*zeta(3)/24 = 1.252142607457910713958...
Multiplicative with a(2^e) = 3*2^(3*e-2), and a(p^e) = p^(3*e) for odd primes p. - Amiram Eldar, Oct 26 2020
a(n) = Sum_{1 <= i, j, k <= n} (-1)^(1 + gcd(i,j,k,n)) = Sum_{d | n} (-1)^(d+1) * J_3(n/d). Cf. A129194. - Peter Bala, Jan 16 2024

A373133 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} sigma( ( n/gcd(x_1, x_2, x_3, n) )^3 ).

Original entry on oeis.org

1, 106, 1041, 7218, 19345, 110346, 136801, 465522, 768327, 2050570, 1947121, 7513938, 5226481, 14500906, 20138145, 29822066, 25640641, 81442662, 49651921, 139632210, 142409841, 206394826, 154751521, 484608402, 302749845, 554006986, 560366223, 987429618, 616040881
Offset: 1

Views

Author

Seiichi Manyama, May 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(6*e+4)*(p+1) - p^(3*e)*(p^4+p^3+p+1) + p^2+p)/((p^2-1)*(p^3+1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2024 *)
  • PARI
    J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
    a(n, k=3, m=3) = sumdiv(n, d, J(d, k)*sigma(d^m));

Formula

a(n) = Sum_{d|n} J_3(d) * sigma(d^3), where the Jordan totient function J_3(n) = A059376(n).
From Amiram Eldar, May 26 2024: (Start)
Multiplicative with a(p^e) = (p^(6*e+4)*(p+1) - p^(3*e)*(p^4+p^3+p+1) + p^2+p)/((p^2-1)*(p^3+1)).
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = zeta(4) * zeta(7) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 1/p^4 - 1/p^5 - 1/p^6 - 1/p^7 + 1/p^8) = 1.71945569563704656468... . (End)

A115224 Number of 3 X 3 symmetric matrices over Z(n) having determinant 1.

Original entry on oeis.org

1, 28, 234, 896, 3100, 6552, 16758, 28672, 56862, 86800, 160930, 209664, 371124, 469224, 725400, 917504, 1419568, 1592136, 2475738, 2777600, 3921372, 4506040, 6435814, 6709248, 9687500, 10391472, 13817466, 15015168, 20510308, 20311200, 28628190, 29360128, 37657620
Offset: 1

Views

Author

T. D. Noe, Jan 16 2006

Keywords

Crossrefs

Cf. A000056 (order of the group SL(2, Z_n)), A011785 (number of 3 X 3 matrices whose determinant is 1 mod n, i.e. order of SL(3, Z_n)).

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b, c}, {b, d, e}, {c, e, f}}; If[Det[m, Modulus->n]==1, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}, {d, 0, n-1}, {e, 0, n-1}, {f, 0, n-1}]; cnt, {n, 2, 20}]
    JordanTotient[n_,k_:1] := DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]; A115224[n_IntegerQ] := JordanTotient[n^2,3]/n; Table[A115224[n], {n,100}] (* Enrique Pérez Herrero, Sep 14 2010 *)
    f[p_, e_] := (p^3 - 1)*p^(5*e - 3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 15 2020 *)

Formula

a(1)=1 because the matrix of all zeros has determinant 0, but 0=1 (mod 1).
For prime p, a(p) = (p^3-1)*p^2.
Multiplicative with a(p^e) = (p^3-1)*p^(5e-3).
a(n) = A011785(n)/A000056(n).
a(n) = A059376(n^2)/n. - Enrique Pérez Herrero, Sep 14 2010
a(n) = n^2*A059376(n). Dirichlet g.f.: zeta(s-5)/zeta(s-2). - R. J. Mathar, Feb 27 2011
Sum_{k=1..n} a(k) ~ 15*n^6 / Pi^4. - Vaclav Kotesovec, Feb 07 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/(1 - p^3 - p^5 + p^8)) = 1.04172462829914219180789244796430293454403616906393417764614215669994022537... - Vaclav Kotesovec, Sep 20 2020
Previous Showing 21-30 of 46 results. Next