cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A069095 Jordan function J_10(n).

Original entry on oeis.org

1, 1023, 59048, 1047552, 9765624, 60406104, 282475248, 1072693248, 3486725352, 9990233352, 25937424600, 61855850496, 137858491848, 288972178704, 576640565952, 1098437885952, 2015993900448, 3566920035096, 6131066257800
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

a(n) is divisible by 264 = (2^3)*3*11 = A006863(5), except for n = 1, 2, 3 or 11. See Lugo. - Peter Bala, Jan 13 2024

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J-2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069091 - A069094 (J_6 through J_9).
Cf. A013669.

Programs

  • Maple
    f:= n -> n^10*mul(1-1/p^10, p=numtheory:-factorset(n)):
    map(f, [$1..30]); # Robert Israel, Jan 09 2015
  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 10]; Array[f, 21]
    f[p_, e_] := p^(10*e) - p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    a(n) = sumdiv(n,d,d^10*moebius(n/d));

Formula

a(n) = Sum_{d|n} d^10*mu(n/d).
Multiplicative with a(p^e) = p^(10e)-p^(10(e-1)).
Dirichlet generating function: zeta(s-10)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^10*Product_{distinct primes p dividing n} (1-1/p^10). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^11 / (11*zeta(11)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^10 = 1/zeta(11).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^10/(p^10-1)^2) = 1.0009955309... (End)

A007487 Sum of 9th powers.

Original entry on oeis.org

0, 1, 513, 20196, 282340, 2235465, 12313161, 52666768, 186884496, 574304985, 1574304985, 3932252676, 9092033028, 19696532401, 40357579185, 78800938560, 147520415296, 266108291793, 464467582161, 787155279940, 1299155279940, 2093435326521, 3300704544313
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 9 of array A103438.

Programs

  • Magma
    [&+[n^9: n in [0..m]]: m in [0..22]]; // Bruno Berselli, Aug 23 2011
    
  • Maple
    [seq(add(i^9,i=1..n),n=0..40)];
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^9 od: seq(a[n], n=0..22); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    lst={};s=0;Do[s=s+n^9;AppendTo[lst, s], {n, 10^2}];lst..or..Table[Sum[k^9, {k, 1, n}], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,30]^9] (* Harvey P. Dale, Oct 09 2016 *)
  • PARI
    a(n)=n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 \\ Charles R Greathouse IV, Oct 07 2015
  • Python
    A007487_list, m = [0], [362880, -1451520, 2328480, -1905120, 834120, -186480, 18150, -510, 1, 0, 0]
    for _ in range(10**2):
        for i in range(10):
            m[i+1]+= m[i]
        A007487_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    

Formula

a(n) = n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 (see MathWorld, Power Sum, formula 39). a(n) = n*A000542(n) - Sum_{i=0..n-1} A000542(i). - Bruno Berselli, Apr 26 2010
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1-x)^11. a(n) = a(-n-1). - Bruno Berselli, Aug 23 2011
a(n) = -Sum_{j=1..9} j*Stirling1(n+1,n+1-j)*Stirling2(n+9-j,n). - Mircea Merca, Jan 25 2014
a(n) = (16/5)*A000217(n)^5 - 4*A000217(n)^4 + (12/5)*A000217(n)^3 - (3/5)*A000217(n)^2. - Michael Raney, Mar 14 2016
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n > 10. - Wesley Ivan Hurt, Dec 21 2016
a(n) = 288*A005585(n-1)^2 + 1728*A108679(n-3) + A062392(n)^2. - Yasser Arath Chavez Reyes, May 11 2024
a(n) = Sum_{i=1..n} J_9(i)*floor(n/i), where J_9 is A069094. - Ridouane Oudra, Jul 17 2025

A351249 a(n) = n^9 * Sum_{p|n, p prime} 1/p^9.

Original entry on oeis.org

0, 1, 1, 512, 1, 20195, 1, 262144, 19683, 1953637, 1, 10339840, 1, 40354119, 1972808, 134217728, 1, 397498185, 1, 1000262144, 40373290, 2357948203, 1, 5293998080, 1953125, 10604499885, 387420489, 20661308928, 1, 39453437071, 1, 68719476736, 2357967374, 118587877009, 42306732
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^9. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 20195; a(6) = 6^9 * Sum_{p|6, p prime} 1/p^9 = 10077696 * (1/2^9 + 1/3^9) = 20195.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), this sequence (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^9*DivisorSum[#, 1/#^9 &, PrimeQ] &, 50] (* Wesley Ivan Hurt, Jul 15 2025 *)
  • Python
    from sympy import primefactors
    def A351249(n): return sum((n//p)**9 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069094(d)*A001221(n/d). - Ridouane Oudra, Jul 15 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^9, where c = A010051.
a(p^k) = p^(9*k-9) for p prime and k>=1. (End)

A069092 Jordan function J_7(n).

Original entry on oeis.org

1, 127, 2186, 16256, 78124, 277622, 823542, 2080768, 4780782, 9921748, 19487170, 35535616, 62748516, 104589834, 170779064, 266338304, 410338672, 607159314, 893871738, 1269983744, 1800262812, 2474870590, 3404825446, 4548558848
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Cf. A069091 (J_6), A069092 (J_7), A069093 (J_8), A069094 (J_9), A069095 (J_10). [Enrique Pérez Herrero, Nov 02 2010]
Cf. A013666.

Programs

  • Mathematica
    JordanTotient[n_, k_: 1] := DivisorSum[n, (#^k)*MoebiusMu[n/# ] &] /; (n > 0) && IntegerQ[n]
    A069092[n_] := JordanTotient[n, 7]; (* Enrique Pérez Herrero, Nov 02 2010 *)
    f[p_, e_] := p^(7*e) - p^(7*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, d^7*moebius(n/d)), ", "))

Formula

a(n) = Sum_{d|n} d^7*mu(n/d).
Multiplicative with a(p^e) = p^(7e)-p^(7(e-1)).
Dirichlet generating function: zeta(s-7)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^7*Product_{distinct primes p dividing n} (1-1/p^7). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ 4725*n^8 / (4*Pi^8). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^7 = 1/zeta(8).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^7/(p^7-1)^2) = 1.0084115178... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A_7(x^n)/(1 - x^n)^8 = x + 127*x^2 + 2186*x^3 + 16256*x^4 + 78124*x^5 + ..., where A_7(x) = x + 120*x^2 + 1191*x^3 + 2416*x^4 + 1191*x^5 + 120*x^6 + x^7 is the 7th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022

A160953 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10.

Original entry on oeis.org

1, 511, 9841, 130816, 488281, 5028751, 6725601, 33488896, 64566801, 249511591, 235794769, 1287360256, 883708281, 3436782111, 4805173321, 8573157376, 7411742281, 32993635311, 17927094321, 63874967296, 66186639441, 120491126959, 81870575521, 329564225536
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^9 such that the quotient group Z^9 / L is C_n. - Álvar Ibeas, Nov 03 2015

Crossrefs

Programs

  • Maple
    A160953 := proc(n)
        add(numtheory[mobius](n/d)*d^9,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A160953(n)) ;
    end do: # R. J. Mathar, Mar 14 2016
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    A160953[n_]:=JordanTotient[n,9]/JordanTotient[n];
    f[p_, e_] := p^(8*e - 8) * (p^9-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^8, d, if(ispower(d, 9), moebius(sqrtnint(d, 9))*sigma(n^8/d), 0))) \\ Altug Alkan, Nov 05 2015
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i,1]; f[i,1] = p^(8*f[i,2]-8)*(p^9-1)/(p-1); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_9(n)/phi(n) = A069094(n)/A000010(n).
From Álvar Ibeas, Nov 03 2015: (Start)
Multiplicative with a(p^e) = p^(8e-8) * (p^9-1) / (p-1).
For squarefree n, a(n) = A000203(n^8). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^9, where c = (1/9) * Product_{p prime} (1 + (p^8-1)/((p-1)*p^9)) = 0.2156692448... .
Sum_{k>=1} 1/a(k) = zeta(8)*zeta(9) * Product_{p prime} (1 - 2/p^9 + 1/p^17) = 1.002068659133... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^9). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A381713 a(n) = J_9(n)/J_3(n), where J_k is the k-th Jordan totient function.

Original entry on oeis.org

1, 73, 757, 4672, 15751, 55261, 117993, 299008, 551853, 1149823, 1772893, 3536704, 4829007, 8613489, 11923507, 19136512, 24142483, 40285269, 47052741, 73588672, 89320701, 129421189, 148048057, 226349056, 246109375, 352517511, 402300837, 551263296
Offset: 1

Views

Author

Seiichi Manyama, Mar 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(6*e) * (1 + 1/p^3 + 1/p^6); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 28] (* Amiram Eldar, Mar 05 2025 *)
  • PARI
    J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
    a(n) = J(n, 9)/J(n, 3);
    
  • PARI
    a(n) = {my(p = factor(n)[, 1]); n^6 * prod(i = 1, #p, 1 + 1/p[i]^3 + 1/p[i]^6);} \\ Amiram Eldar, Mar 05 2025

Formula

a(n) = A069094(n)/A059376(n).
a(n) = n^6 * Product_{distinct primes p dividing n} (1 + 1/p^3 + 1/p^6).
From Amiram Eldar, Mar 05 2025: (Start)
Dirichlet g.f.: zeta(s-6) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = Product_{p prime} (1 + 1/p^4 + 1/p^7) = 1.08635980686198102055... .
Sum_{n>=1} 1/a(n) = zeta(6)*zeta(9) * Product_{p prime} (1 - 2/p^9 + 1/p^15) = 1.01533121878447451064... . (End)

A336488 Values taken by all the Jordan totient functions J_k(m) for k >= 1 and m >= 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

The asymptotic density of this sequence is 0 (Rao and Murty, 1979).
First differs from A221178 at n = 75, since a(75) = J_3(6) = 182 is not a term of A221178.

Crossrefs

Programs

  • Mathematica
    phiQ[m_] := Select[Range[m + 1, 2 m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; jor[k_, n_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; jorval[k_, mx_] := jor[k, #] & /@ Range[Floor@Surd[mx*Zeta[k], k]]; mx = 300; Select[Union @ Flatten[{Select[Range[mx], phiQ], jorval[#, mx] & /@ Range[2, Floor[Log2[mx]]]}], # <= mx &] (* using code by Jean-François Alcover at A002202 *)
Showing 1-7 of 7 results.