cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 142 results. Next

A048107 Numbers k such that the number of unitary divisors of k (A034444) is larger than the number of non-unitary divisors of k (A048105).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Numbers with at most one 2 and no 3s or higher in their prime exponents. - Charles R Greathouse IV, Aug 25 2016
A disjoint union of A005117 and A060687. The asymptotic density of this sequence is (6/Pi^2) * (1 + Sum_{p prime} 1/(p*(p+1))) = A059956 * (1 + A179119) = A059956 + A271971 = 0.8086828238... - Amiram Eldar, Nov 07 2020

Examples

			n = 420 = 2*2*3*5*7, 4 distinct prime factors, 24 divisors of which 16 are unitary and 8 are not; ud(n) > nud(n) and 2^(4+1) = 32 is larger than d, the number of divisors.
		

Crossrefs

Complement of A048108.
A072357 is a subsequence.

Programs

  • Mathematica
    Select[Range[500], 2^(1 + PrimeNu[#]) > DivisorSigma[0, #] &] (* G. C. Greubel, May 05 2017 *)
  • PARI
    is(n)=my(f=factor(n)[, 2], t); for(i=1, #f, if(f[i]>1, if(t||f[i]>2, return(0), t=1))); 1 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    is(n)=n==1 || factorback(factor(n)[,2])<3 \\ Charles R Greathouse IV, Aug 25 2016

Formula

Numbers for which 2^(r(n)+1) > d(n), where r = A001221, d = A000005.

A048111 Number of unitary divisors of n (A034444) < number of non-unitary divisors of n (A048105).

Original entry on oeis.org

16, 32, 36, 48, 64, 72, 80, 81, 96, 100, 108, 112, 128, 144, 160, 162, 176, 180, 192, 196, 200, 208, 216, 224, 225, 240, 243, 252, 256, 272, 288, 300, 304, 320, 324, 336, 352, 360, 368, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 464, 468, 480, 484
Offset: 1

Views

Author

Keywords

Comments

Numbers n that are expressible as a product of 2 "nonsquarefree" numbers (i.e., there are 2 integers x,y in A001694 such that n = xy). - Benoit Cloitre, Jan 01 2003
Also numbers having more than one square divisor > 1: A046951(a(n)) > 2. - Reinhard Zumkeller, Apr 08 2003
The asymptotic density of this sequence is 1 - (6/Pi^2)*(1 + Sum_{n>=1} 1/prime(n)^2) = 1 - A059956 * (1 + A085548) = 0.1171394347594477824... . - Amiram Eldar, Sep 25 2022

Examples

			36 is in the sequence since the number of its unitary divisors, {1, 4, 9, 36} is 4 which is smaller than 5, the number of its non-unitary divisors, {2, 3, 6, 12, 18}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[484], DivisorSigma[0, #] > 2^(PrimeNu[#]+1) &] (* Amiram Eldar, Jun 11 2019 *)
  • PARI
    is(n)=my(f=factor(n)[,2],t); for(i=1,#f,if(f[i]>1, if(t||f[i]>3, return(1), t=1))); 0 \\ Charles R Greathouse IV, Sep 17 2015

Formula

A000005(a(n)) > 2^(1 + A001221(a(n))).

A195069 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 10.

Original entry on oeis.org

2048, 6144, 9216, 10240, 13824, 14336, 20736, 22528, 25600, 26624, 30720, 31104, 34816, 38912, 43008, 46080, 46656, 47104, 50176, 59392, 63488, 64000, 64512, 67584, 69120, 69984, 71680, 75776, 76800, 79872, 83968, 88064, 96256, 96768, 101376, 103680, 104448
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0003698..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 25 2024

Examples

			14336 = 2^11 * 7^1, so it has 12 prime factors (counted with multiplicity) and 2 distinct prime factors, and 12-2 = 10.
		

Crossrefs

Programs

  • Haskell
    a195069 n = a195069_list !! (n-1)
    a195069_list = filter ((== 10) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
    
  • Maple
    op(select(n->bigomega(n)-nops(factorset(n))=10, [$1..104448])); # Paolo P. Lava, Jul 03 2018
  • Mathematica
    Select[Range[200000], PrimeOmega[#] - PrimeNu[#] == 10&]
  • PARI
    isok(n) = bigomega(n) - omega(n) == 10; \\ Michel Marcus, Jul 03 2018

Formula

A046660(a(n)) = 10. - Reinhard Zumkeller, Nov 29 2015

A195088 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 4.

Original entry on oeis.org

32, 96, 144, 160, 216, 224, 243, 324, 352, 400, 416, 480, 486, 544, 608, 672, 720, 736, 784, 928, 992, 1000, 1008, 1056, 1080, 1120, 1184, 1200, 1215, 1248, 1312, 1376, 1504, 1512, 1584, 1620, 1632, 1696, 1701, 1760, 1800, 1824, 1872, 1888, 1936, 1952
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0237194..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195088 n = a195088_list !! (n-1)
    a195088_list = filter ((== 4) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[2000],PrimeOmega[#]-PrimeNu[#]==4&]
  • PARI
    is(n)=bigomega(n)-omega(n)==4 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 4. - Reinhard Zumkeller, Nov 29 2015

A195090 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 6.

Original entry on oeis.org

128, 384, 576, 640, 864, 896, 1296, 1408, 1600, 1664, 1920, 1944, 2176, 2187, 2432, 2688, 2880, 2916, 2944, 3136, 3712, 3968, 4000, 4032, 4224, 4320, 4374, 4480, 4736, 4800, 4992, 5248, 5504, 6016, 6048, 6336, 6480, 6528, 6784
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0059189..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195090 n = a195090_list !! (n-1)
    a195090_list = filter ((== 6) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Maple
    op(select(n->bigomega(n)-nops(factorset(n))=6, [$1..6784])); # Paolo P. Lava, Jul 03 2018
  • Mathematica
    Select[Range[7000],PrimeOmega[#]-PrimeNu[#]==6&]
  • PARI
    is(n)=bigomega(n)-omega(n)==6 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 6. - Reinhard Zumkeller, Nov 29 2015

A195092 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 8.

Original entry on oeis.org

512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 6656, 7680, 7776, 8704, 9728, 10752, 11520, 11664, 11776, 12544, 14848, 15872, 16000, 16128, 16896, 17280, 17496, 17920, 18944, 19200, 19683, 19968, 20992, 22016, 24064, 24192
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0014793..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195092 n = a195092_list !! (n-1)
    a195092_list = filter ((== 8) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[25000],PrimeOmega[#]-PrimeNu[#]==8&]
  • PARI
    is(n)=bigomega(n)-omega(n)==8 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 8. - Reinhard Zumkeller, Nov 29 2015

A195093 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 9.

Original entry on oeis.org

1024, 3072, 4608, 5120, 6912, 7168, 10368, 11264, 12800, 13312, 15360, 15552, 17408, 19456, 21504, 23040, 23328, 23552, 25088, 29696, 31744, 32000, 32256, 33792, 34560, 34992, 35840, 37888, 38400, 39936, 41984, 44032, 48128, 48384
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0007396..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195093 n = a195093_list !! (n-1)
    a195093_list = filter ((== 9) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[50000],PrimeOmega[#]-PrimeNu[#]==9&]
  • PARI
    is(n)=bigomega(n)-omega(n)==9 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 9. - Reinhard Zumkeller, Nov 29 2015

A325241 Numbers > 1 whose maximum prime exponent is one greater than their minimum.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 180, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 252, 260, 261, 268, 275, 276, 279
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose maximum multiplicity is one greater than their minimum (counted by A325279).
The asymptotic density of this sequence is 1/zeta(3) - 1/zeta(2) = A088453 - A059956 = 0.22398... . - Amiram Eldar, Jan 30 2023

Examples

			The sequence of terms together with their prime indices begins:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  28: {1,1,4}
  44: {1,1,5}
  45: {2,2,3}
  50: {1,3,3}
  52: {1,1,6}
  60: {1,1,2,3}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
  75: {2,3,3}
  76: {1,1,8}
  84: {1,1,2,4}
  90: {1,2,2,3}
  92: {1,1,9}
  98: {1,4,4}
  99: {2,2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Max@@FactorInteger[#][[All,2]]-Min@@FactorInteger[#][[All,2]]==1&]
    Select[Range[300],  Min[e = FactorInteger[#][[;; , 2]]] +1 == Max[e] &] (* Amiram Eldar, Jan 30 2023 *)
  • PARI
    is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) + 1 == vecmax(e); } \\ Amiram Eldar, Jan 30 2023
  • Python
    from sympy import factorint
    def ok(n):
        e = sorted(factorint(n).values())
        return n > 1 and max(e) == 1 + min(e)
    print([k for k in range(280) if ok(k)]) # Michael S. Branicky, Dec 18 2021
    

Formula

A051903(a(n)) - A051904(a(n)) = 1.

A053462 Number of positive squarefree integers less than 10^n.

Original entry on oeis.org

0, 6, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, 6079270942, 60792710280, 607927102274, 6079271018294, 60792710185947, 607927101854103, 6079271018540405, 60792710185403794, 607927101854022750, 6079271018540280875, 60792710185402613302
Offset: 0

Views

Author

Harvey P. Dale, Aug 01 2001

Keywords

Examples

			There are 608 squarefree integers smaller than 1000.
		

Crossrefs

Apart from first two terms, same as A071172.
Binary counterpart is A143658. - Gerard P. Michon, Apr 30 2009

Programs

  • Mathematica
    a[n_] := Module[{t=10^n-1}, Sum[MoebiusMu[k]Floor[t/k^2], {k, 1, Sqrt[t]}]]
  • PARI
    a(n)=sum(d=1,sqrtint(n=10^n-1), n\d^2*moebius(d)) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(s); forsquarefree(d=1,sqrtint(n=10^n-1), s += n\d[1]^2 * moebius(d)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A053462(n):
        m = 10**n-1
        return sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) # Chai Wah Wu, Jun 01 2024

Formula

a(n)/10^n = (6/Pi^2)*(1+o(1)), cf. A059956.
a(n) = A071172(n) - [n <= 1] where [] is the Iverson bracket. - Chai Wah Wu, Jun 01 2024

Extensions

More terms from Dean Hickerson and Vladeta Jovovic, Aug 06 2001
One more term from Jud McCranie, Sep 01 2005
a(0)=0 and a(14)-a(17) from Gerard P. Michon, Apr 30 2009
a(18)-a(20) from Charles R Greathouse IV, Jan 08 2018

A342586 a(n) is the number of pairs (x,y) with 1 <= x, y <= 10^n and gcd(x,y)=1.

Original entry on oeis.org

1, 63, 6087, 608383, 60794971, 6079301507, 607927104783, 60792712854483, 6079271032731815, 607927102346016827, 60792710185772432731, 6079271018566772422279, 607927101854119608051819, 60792710185405797839054887, 6079271018540289787820715707, 607927101854027018957417670303
Offset: 0

Views

Author

Karl-Heinz Hofmann, Mar 16 2021

Keywords

References

  • Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54. (See link below.)

Crossrefs

a(n) = 2*A064018(n) - 1. - Hugo Pfoertner, Mar 16 2021
a(n) = A018805(10^n). - Michel Marcus, Mar 16 2021
Related counts of k-tuples:
triples: A071778, A342935, A342841;
quadruples: A082540, A343527, A343193;
5-tuples: A343282;
6-tuples: A343978, A344038. - N. J. A. Sloane, Jun 13 2021

Programs

  • PARI
    a342586(n)=my(s, m=10^n); forfactored(k=1,m,s+=eulerphi(k)); s*2-1 \\ Bruce Garner, Mar 29 2021
    
  • PARI
    a342586(n)=my(s, m=10^n); forsquarefree(k=1,m,s+=moebius(k)*(m\k[1])^2); s \\ Bruce Garner, Mar 29 2021
  • Python
    import math
    for n in range (0,10):
         counter = 0
         for x in range (1, pow(10,n)+1):
            for y in range(1, pow(10,n)+1):
                if math.gcd(y,x) ==  1:
                    counter += 1
         print(n, counter)
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A018805(n):
      if n == 1: return 1
      return n*n - sum(A018805(n//j) for j in range(2, n//2+1)) - (n+1)//2
    print([A018805(10**n) for n in range(8)]) # Michael S. Branicky, Mar 18 2021
    

Formula

Lim_{n->infinity} a(n)/10^(2*n) = 6/Pi^2 = 1/zeta(2).

Extensions

a(10) from Michael S. Branicky, Mar 18 2021
More terms using A064018 from Hugo Pfoertner, Mar 18 2021
Edited by N. J. A. Sloane, Jun 13 2021
Previous Showing 31-40 of 142 results. Next