cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A109998 Non-Cunningham primes: primes isolated from any Cunningham chain under any iteration of 2p+-1 or (p+-1)/2.

Original entry on oeis.org

17, 43, 67, 71, 101, 103, 109, 127, 137, 149, 151, 163, 181, 197, 223, 241, 257, 269, 283, 311, 317, 349, 353, 373, 389, 401, 409, 433, 449, 461, 463, 487, 521, 523, 557, 569, 571, 599, 617, 631, 643, 647, 677, 701, 709, 739, 751, 769, 773, 787, 797, 821
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 01 2005

Keywords

Comments

The condition that neither 2p - 1 nor 2p + 1 be prime is equivalent to ((p-1) mod 3 = 0) or ((p+1) mod 3 = 0). For example, the prime p = 2^607 - 1 is not in this sequence because p + 1 mod 3 = 2. - Washington Bomfim, Oct 30 2009

Examples

			a(1) = 17 is here because 17 * 2 + 1 = 35, 17 * 2 - 1 = 33; (17+1)/2 = 9, (17-1)/2 = 8: four composite numbers.
		

Crossrefs

Programs

  • Mathematica
    nonCunninghamPrimes = {}; Do[p = Prime[n]; If[!PrimeQ[2p - 1] && !PrimeQ[2p + 1] && !PrimeQ[(p - 1)/2] && !PrimeQ[(p + 1)/2], AppendTo[nonCunninghamPrimes, p]], {n, 6!}]; nonCunninghamPrimes (* Vladimir Joseph Stephan Orlovsky, Mar 22 2009 *)

Extensions

Corrected and extended by Ray Chandler, Sep 02 2005
Replaced link to cached arXiv URL with link to the abstract - R. J. Mathar, Mar 01 2010

A037174 Primes which are not the sum of consecutive composite numbers.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 47, 61, 73, 107, 167, 179, 313, 347, 421, 479, 719, 863, 1153, 1213, 1283, 1307, 1523, 3467, 3733, 4007, 4621, 4787, 5087, 5113, 5413, 7523, 7703, 9817, 10333, 12347, 12539, 13381, 17027, 18553, 19717, 19813, 23399, 26003, 31873, 36097, 38833
Offset: 1

Views

Author

Keywords

Comments

It seems reasonable that a(n)/A079149(n) has an asymptote that could be estimated. - Peter Munn, Aug 21 2023

Crossrefs

Subsequence of A079149.
With {1}, the complement of A133576.
Primes that are the sum of specific numbers of consecutive composite numbers: A060254 (2), A060328 (3), A060329 (4), A060330 (5), A060331 (6), A060332 (7), A060333 (8).

Programs

  • Maple
    N:= 5000:
    primes,comps:= selectremove(isprime,{$2..N}):
    M:= nops(comps):
    X:= primes:
    for n from 1 to floor(sqrt(2*N)) do
    i:= 1;
    T:= add(comps[k],k=1..n);
    while T <= N do
    X := X minus {T};
    if i + n > M then break fi;
    T := T + comps[i+n] - comps[i];
    i := i+1;
    od;
    od:
    X;
    # Robert Israel, Jun 24 2008

Extensions

More terms from Jud McCranie, Jul 12 2000
Corrected by T. D. Noe, Aug 15 2008

A096676 a(n) = (A096788(n)-1)/2.

Original entry on oeis.org

4, 7, 10, 16, 17, 19, 25, 31, 32, 34, 37, 40, 47, 49, 52, 55, 59, 62, 67, 70, 76, 77, 82, 91, 94, 104, 107, 109, 110, 115, 121, 122, 124, 130, 136, 142, 149, 151, 154, 157, 160, 161, 164, 170, 172, 181, 184, 185, 187, 196, 202, 205, 206, 214, 220, 226, 227, 229
Offset: 1

Views

Author

Ray Chandler, Jul 10 2004

Keywords

Comments

a(n)*4 + 3 = A096787(n).

Crossrefs

A060333 Primes which are the sum of eight consecutive composite numbers.

Original entry on oeis.org

193, 277, 353, 433, 443, 613, 643, 653, 673, 683, 739, 881, 1109, 1129, 1237, 1511, 1531, 1609, 1619, 1697, 1873, 1999, 2017, 2027, 2113, 2207, 2239, 2281, 2371, 2447, 2621, 2657, 2677, 2687, 2749, 2801, 2833, 2843, 2909, 2927, 3023, 3083, 3121, 3167
Offset: 1

Views

Author

Robert G. Wilson v, Mar 30 2001

Keywords

Crossrefs

Programs

  • Maple
    comps:= remove(isprime, [$4..1000]):
    S:= add(comps[i+1..i-8],i=0..7):
    select(isprime,S); # Robert Israel, Dec 12 2019
  • Mathematica
    composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1 != n, k++ ]; k); a = {}; Do[ p = Sum[ composite[ n + k ], {k, 0, 7} ]; If[ PrimeQ[ p ], a = Append[ a, p ] ], {n, 1, 600} ]; a
    Select[Total /@ Partition[ Select[ Range@ 500, CompositeQ], 8, 1], PrimeQ] (* Giovanni Resta, Dec 13 2019 *)

A135170 Primes equal to a sum c1+c2 of two consecutive composite numbers such that lpf(c1)-spf(c1)+lpf(c2)-spf(c2) from their largest and smallest prime factors is prime.

Original entry on oeis.org

19, 29, 31, 41, 43, 53, 67, 71, 79, 89, 101, 109, 131, 149, 151, 173, 197, 199, 233, 239, 241, 251, 269, 271, 283, 307, 311, 317, 331, 337, 349, 367, 401, 419, 439, 449, 461, 487, 491, 499, 509, 521, 593, 599, 617, 641, 647, 683, 691, 727, 739, 751, 769, 809
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 14 2008

Keywords

Crossrefs

Cf. A111426.

Programs

  • Maple
    A002808 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A002808(n-1)+1 do if not isprime(a) then RETURN(a) ; fi ; od: fi ; end:
    isA060254 := proc(n) local i,sComp ; if isprime(n) then for i from 1 do sComp := A002808(i)+A002808(i+1) ; if sComp = n then RETURN(i); elif sComp > n then RETURN(-1) ; fi ; od: else -1 ; fi ; end:
    A046665 := proc(n) local a,ifs ; a := 0 ; ifs := seq(op(1, i),i=ifactors(n)[2]) ; max(ifs)-min(ifs) ; end:
    A111426 := proc(n) A046665(A002808(n)) ; end:
    isA135170 := proc(p) local i ; i := isA060254(p) ; if i > 0 then A111426(i) + A111426(i+1) ; isprime(%) ; else false ; fi ; end:
    for n from 1 to 300 do p := ithprime(n) ; if isA135170(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Feb 19 2008

Formula

{A060254(j): A002808(i)+A002808(i+1)=A060254(j) and A111426(i)+A111426(i+1) in A000040}. Subsequence of A060254. - R. J. Mathar, Feb 19 2008

Extensions

Corrected and extended by R. J. Mathar, Feb 19 2008
More precise definition by R. J. Mathar, Sep 17 2009

A151744 Primes which are the sum of two, three, four and five consecutive composite numbers.

Original entry on oeis.org

17783, 25057, 47303, 48383, 49297, 76343, 89783, 205703, 412343, 516457, 704183, 754417, 790703, 938183, 1105343, 1110743, 1279583, 1563503, 1632817, 1744583, 1890743, 1903103, 2062943, 2276303, 2714617, 2802383, 2812897, 2932703
Offset: 1

Views

Author

Claudio Meller, Jun 15 2009

Keywords

Comments

17783 is in the list because: 17783 = 8891 + 8892 (sum of two consecutive composite numbers)
17783 = 5926 + 5928 + 5929 (sum of three consecutive composite numbers)
17783 = 4444 + 4445 + 4446 + 4448 (sum of four consecutive composite numbers)
17783 = 3554 + 3555 + 3556 + 3558 + 3560 (sum of five consecutive composite numbers)

Programs

  • Mathematica
    CompositeNext[n_]:=Module[{k=n+1},While[PrimeQ[k],k++ ];k]; q=9!; lst2={};Do[If[ !PrimeQ[n],c=CompositeNext[n];a2=n+c;If[PrimeQ[a2],AppendTo[lst2,a2]]],{n,q}];lst2; lst3={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];a3=n+c1+c2;If[PrimeQ[a3],AppendTo[lst3,a3]]],{n,q}];lst3; lst4={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];c3=CompositeNext[c2];a4=n+c1+c2+c3;If[PrimeQ[a4],AppendTo[lst4,a4]]],{n,q}];lst4; lst5={};Do[If[ !PrimeQ[n],c1=CompositeNext[n];c2=CompositeNext[c1];c3=CompositeNext[c2];c4=CompositeNext[c3];a5=n+c1+c2+c3+c4;If[PrimeQ[a5],AppendTo[lst5,a5]]],{n,q}];lst5; Intersection[lst2,lst3,lst4,lst5] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2009 *)
    Module[{comps=Select[Range[2*10^6],CompositeQ]},Intersection@@ Table[ Select[ Total/@ Partition[comps,n,1],PrimeQ],{n,2,5}]] (* Harvey P. Dale, Apr 16 2015 *)

Formula

Intersection of A060254, A060328, A060329 and A060330. - R. J. Mathar, Jun 17 2009

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jun 16 2009

A167915 Primes which are the sums of two consecutive nonprimes (A141468).

Original entry on oeis.org

5, 17, 19, 29, 31, 41, 43, 53, 67, 71, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 163, 173, 181, 191, 197, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 271, 281, 283, 293, 307, 311, 317, 331, 337, 349, 353, 367, 373, 379, 389, 401, 409
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2009

Keywords

Comments

Five together with primes that are the sum of two consecutive composite numbers.

Examples

			a(1)=1+4=5, a(2)=8+9=17.
		

Crossrefs

Programs

  • Magma
    [2*n+1: n in [1..300] | (not IsPrime(n) eq not IsPrime(n+1)) and IsPrime(2*n+1)]; // G. C. Greubel, Nov 10 2023
    
  • Mathematica
    2*Select[Range[300], !PrimeQ[#] == !PrimeQ[#+1] && PrimeQ[2*#+1] &] + 1 (* G. C. Greubel, Jul 01 2016; Nov 10 2023 *)
  • SageMath
    [2*n+1 for n in (1..300) if  (not is_prime(n)) - (not is_prime(n+1)) == 0 and is_prime(2*n+1)] # G. C. Greubel, Nov 10 2023

Formula

a(n+1) = A060254(n) = A176902(n+1). - Juri-Stepan Gerasimov, Apr 28 2010

Extensions

Typo corrected and terms checked by D. S. McNeil, Nov 17 2010

A096675 a(n) = A096786(n)/2.

Original entry on oeis.org

4, 7, 10, 13, 22, 24, 25, 27, 28, 34, 37, 43, 45, 49, 57, 58, 60, 64, 67, 70, 73, 79, 84, 87, 88, 93, 97, 100, 102, 108, 112, 115, 127, 130, 139, 142, 144, 148, 150, 154, 160, 163, 169, 175, 177, 190, 192, 193, 199, 202, 205, 207, 213, 214, 220, 232, 234, 235, 238
Offset: 1

Views

Author

Ray Chandler, Jul 10 2004

Keywords

Comments

a(n)*4 + 1 = A096785(n).

Crossrefs

A176902 Primes p such that p-1 and p+1 are both non-semiprime.

Original entry on oeis.org

2, 17, 19, 29, 31, 41, 43, 53, 67, 71, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 163, 173, 181, 191, 197, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 271, 281, 283, 293, 307, 311, 317, 331, 337, 349, 353, 367, 373, 379, 389, 401, 409
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 28 2010

Keywords

Comments

2 together with A060254.

Examples

			a(1)=2 because 2-1=1=non-semiprime and 2+1=3=non-semiprime.
		

Formula

a(n+1)=A060254(n)=A167915(n+1).

Extensions

Corrected (233, 239 inserted, 279 and 289 replaced by 379 and 389) by R. J. Mathar, Aug 12 2010

A096678 A096785 indexed by A000040.

Original entry on oeis.org

7, 10, 13, 16, 24, 25, 26, 29, 30, 33, 35, 40, 42, 45, 50, 51, 53, 55, 57, 60, 62, 66, 68, 70, 71, 74, 77, 79, 80, 84, 87, 89, 97, 98, 102, 104, 106, 108, 110, 113, 116, 119, 123, 126, 127, 135, 136, 137, 139, 140, 142, 145, 147, 148, 152, 158, 159, 160, 162, 165
Offset: 1

Views

Author

Ray Chandler, Jul 10 2004

Keywords

Crossrefs

Formula

a(n) = k such that A000040(k) = A096785(n).
Previous Showing 11-20 of 22 results. Next