cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A258146 Decimal expansion of (1 - 2/Pi)/2: ratio of the area of a circular segment with central angle Pi/2 and the area of the corresponding circular half-disk.

Original entry on oeis.org

1, 8, 1, 6, 9, 0, 1, 1, 3, 8, 1, 6, 2, 0, 9, 3, 2, 8, 4, 6, 2, 2, 3, 2, 4, 7, 3, 2, 5, 4, 9, 7, 1, 2, 7, 5, 9, 3, 1, 0, 8, 0, 7, 0, 8, 5, 1, 9, 0, 8, 7, 1, 0, 2, 5, 0, 4, 6, 6, 5, 3, 1, 1, 8, 8, 2, 2, 0, 6, 4, 0, 4, 7, 3, 1, 5, 4, 6, 9, 2, 9, 8, 1, 9, 7, 7, 2, 3, 9, 4, 4, 6, 7, 4, 9, 3, 8, 2, 8, 0, 8
Offset: 0

Views

Author

Wolfdieter Lang, May 31 2015

Keywords

Comments

The formula for the ratio of the area of a circular segment with central angle alpha and the area of one half of the corresponding circular disk is (alpha - sin(alpha))/Pi. Here alpha = Pi/2.
This is also the ratio of the area of a circular disk without a central inscribed rectangle (2*x, 2*y) together with the two opposite circular segments each with central angle beta and the area of the circular disk. This is the analog of the ratio of the volume of a sphere with missing central cylinder symmetric hole of length 2*y and the area of the sphere. See a comment on A019699. In two dimensions this problem is not remarkable, because the radius R of the circle does matter. The formula is here: area ratio ar = 1 - (beta + sin(beta)/Pi) where beta = arcsin(2*yhat*sqrt(1-yhat^2)), with yhat = y/R, and beta = Pi - alpha from above.
The astonishing result from three dimensions, ar_3 = yhat^3, could suggest ar = yhat^2, which is wrong. Thanks to Sven Heinemeyer for inspiring me to look into this.
Essentially the same digit sequence as A188340. - R. J. Mathar, Jun 12 2015

Crossrefs

Programs

Formula

Area ratio ar = (1 - 2/Pi)/2 = 0.181690113816209...
For Buffon's constant 2/Pi see A060294.

A082542 a(n) = prime(n) + 2 - (prime(n) mod 4).

Original entry on oeis.org

2, 2, 6, 6, 10, 14, 18, 18, 22, 30, 30, 38, 42, 42, 46, 54, 58, 62, 66, 70, 74, 78, 82, 90, 98, 102, 102, 106, 110, 114, 126, 130, 138, 138, 150, 150, 158, 162, 166, 174, 178, 182, 190, 194, 198, 198, 210, 222, 226, 230, 234, 238, 242, 250, 258, 262, 270, 270, 278
Offset: 1

Views

Author

Reinhard Zumkeller, May 02 2003

Keywords

Comments

For k > 1: a(k+1) = a(k) if and only if prime(k) == 1 modulo 4 and prime(k+1) = prime(k) + 2, see A071695 and A071696.

Examples

			a(2) = 2 because the second prime is 3, and 3 + 2 - 3 = 2.
a(3) = 6 because the third prime is 5, and 5 + 2 - 1 = 6.
a(4) = 6 because the fourth prime is 7, and 7 + 2 - 3 = 6.
		

Crossrefs

Programs

  • Magma
    [2 + NthPrime(n) - (NthPrime(n) mod 4): n in [1..60]]; // G. C. Greubel, Nov 14 2018
  • Mathematica
    Table[Prime[n] + 2 - Mod[Prime[n], 4], {n, 60}] (* Alonso del Arte, Feb 23 2015 *)
    #+2-Mod[#,4]&/@Prime[Range[60]] (* Harvey P. Dale, Aug 24 2025 *)
  • PARI
    vector(60, n, 2 + prime(n) - lift(Mod(prime(n),4))) \\ G. C. Greubel, Nov 14 2018
    

Formula

a(n) = A000040(n) + A070750(n).
a(n+1) = p + (-1/p) = p + (-1)^((p-1)/2), where p is the n-th odd prime and (-1/p) denotes the value of Legendre symbol. - Lekraj Beedassy, Mar 17 2005
a(n) = (A000040(n) OR 3) - 1. - Jon Maiga, Nov 14 2018
From Amiram Eldar, Dec 24 2022: (Start)
a(n) = A100484(n) - A076342(n).
Product_{n>=1} a(n)/prime(n) = 2/Pi (A060294). (End)

A165954 Decimal expansion of sqrt(10 + 2*sqrt(5))/(2*Pi).

Original entry on oeis.org

6, 0, 5, 4, 6, 1, 3, 8, 2, 9, 1, 2, 5, 2, 5, 5, 8, 3, 3, 8, 6, 2, 6, 5, 2, 0, 5, 1, 2, 8, 0, 4, 4, 4, 9, 0, 3, 0, 0, 8, 4, 5, 4, 0, 8, 8, 0, 1, 4, 2, 8, 8, 9, 3, 3, 2, 0, 0, 9, 3, 5, 0, 0, 0, 8, 3, 8, 2, 9, 5, 6, 8, 3, 8, 2, 0, 7, 2, 7, 2, 7, 8, 5, 3, 6, 2, 4, 2, 6, 2, 5, 9, 6, 8, 8, 1, 3, 0, 5, 1, 9, 3, 2, 4, 1
Offset: 0

Views

Author

Rick L. Shepherd, Oct 04 2009

Keywords

Comments

The ratio of the volume of a regular icosahedron to the volume of the circumscribed sphere (with circumradius a*sqrt(10 + 2*sqrt(5))/4 = a*A019881, where a is the icosahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165953. A063723 shows the order of these by size.

Examples

			0.6054613829125255833862652051280444903008454088014288933200935000838295683...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[10+2Sqrt[5]]/(2Pi),10,120][[1]] (* Harvey P. Dale, Aug 27 2013 *)
  • PARI
    sqrt(10+2*sqrt(5))/(2*Pi)

Formula

sqrt(10 + 2*sqrt(5))/(2*Pi) = sqrt(10 + 2*A002163)/(2*A000796) = 2*sin(2*Pi/5)/Pi = 2*sin(A019694)/A000796 = 2*sin(72 deg)/Pi = 2*A019881/A000796 = 2*A019881*A049541 = (2/Pi)*sin(72 deg) = A060294*A019881.

A289090 Decimal expansion of (E(|x|^3))^(1/3), with x being a normally distributed random variable.

Original entry on oeis.org

1, 1, 6, 8, 5, 7, 5, 2, 5, 4, 9, 6, 2, 4, 6, 5, 5, 4, 8, 6, 7, 0, 4, 7, 6, 0, 1, 1, 0, 9, 7, 6, 8, 5, 2, 7, 1, 0, 6, 0, 5, 2, 4, 0, 4, 8, 1, 6, 7, 9, 0, 7, 9, 7, 2, 3, 8, 3, 5, 1, 6, 2, 8, 7, 4, 2, 3, 4, 1, 5, 2, 9, 3, 8, 8, 8, 7, 8, 5, 4, 6, 5, 2, 7, 8, 7, 1, 4, 2, 3, 4, 2, 8, 3, 8, 3, 4, 9, 3, 9, 6, 7, 3, 1, 3
Offset: 1

Views

Author

Stanislav Sykora, Jul 26 2017

Keywords

Comments

The p-th root r(p) of the expected value E(|x|^p) for various distributions appears, for example, in chemical physics, where some interactions depend on high powers of interatomic distances.
When x is distributed normally with zero mean and standard deviation 1, r(p) evaluates to r(p) = ((p-1)!!*w(p))^(1/p), where w(p) = 1 for even p and sqrt(2/Pi) for odd p. Note that, by definition, r(2) = 1 and r(1) = w(1) = A076668.
The present constant is a = r(3).

Examples

			1.16857525496246554867047601109768527106052404816790797238351628742...
		

Crossrefs

Cf. A060294, A076668 (p=1), A011002 (p=4), A289091 (p=5), A011350 (p=6).

Programs

  • Mathematica
    ExpectedValue[Abs[#]^3&, NormalDistribution[0, 1]]^(1/3) // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Jul 28 2017 *)
  • PARI
    \\ General code, for any p > 0:
    r(p) = (sqrt(2/Pi)^(p%2)*prod(k=0,(p-2)\2,p-1-2*k))^(1/p);
    a = r(3) \\ Present instance

Formula

Equals (2!!*sqrt(2/Pi))^(1/3) = (2*A076668)^(1/3).

A289091 Decimal expansion of (E(|x|^5))^(1/5), with x being a normally distributed random variable.

Original entry on oeis.org

1, 4, 4, 8, 7, 9, 1, 9, 0, 1, 5, 4, 9, 3, 0, 5, 2, 8, 5, 2, 5, 3, 5, 4, 6, 5, 9, 8, 8, 1, 2, 8, 1, 0, 5, 8, 8, 2, 1, 3, 4, 0, 1, 0, 3, 9, 3, 5, 1, 9, 6, 7, 8, 0, 7, 2, 9, 5, 0, 3, 0, 5, 8, 0, 1, 5, 5, 4, 3, 6, 2, 8, 4, 7, 7, 4, 2, 7, 2, 8, 1, 2, 0, 5, 4, 2, 7, 4, 0, 2, 8, 1, 2, 4, 3, 6, 3, 3, 8, 6, 9, 7, 4, 9, 6
Offset: 1

Views

Author

Stanislav Sykora, Jul 26 2017

Keywords

Comments

The 5th root r(5) of the expected value E(|x|^5) for a normal distribution with zero mean and standard deviation 1. See A289090 for more details.

Examples

			1.44879190154930528525354659881281058821340103935196780729503058015...
		

Crossrefs

Cf. A060294, A076668 (p=1), A289090 (p=3), A011002 (p=4), A011350 (p=6).

Programs

  • PARI
    // General code, for any p > 0:
    r(p) = (sqrt(2/Pi)^(p%2)*prod(k=0,(p-2)\2,p-1-2*k))^(1/p);
    a = r(5) // Present instance

Formula

a = r(5), where r(p) = ((p-1)!!*sqrt(2/Pi))^(1/p).
a = (8*A076668)^(1/5).

A132698 Decimal expansion of 8/Pi.

Original entry on oeis.org

2, 5, 4, 6, 4, 7, 9, 0, 8, 9, 4, 7, 0, 3, 2, 5, 3, 7, 2, 3, 0, 2, 1, 4, 0, 2, 1, 3, 9, 6, 0, 2, 2, 9, 7, 9, 2, 5, 5, 1, 3, 5, 4, 3, 3, 1, 8, 4, 7, 3, 0, 3, 1, 7, 9, 9, 6, 2, 6, 7, 7, 5, 0, 4, 9, 4, 2, 3, 4, 8, 7, 6, 2, 1, 4, 7, 6, 2, 4, 5, 6, 1, 4, 4, 1, 8, 2, 0, 8, 4, 4, 2, 6, 0, 0, 4, 9, 3, 7, 5, 2, 9, 7, 1, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			2.5464790894703253723021402139602297925513543318473031799626775049423487621476....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009

A132714 Decimal expansion of 24/Pi.

Original entry on oeis.org

7, 6, 3, 9, 4, 3, 7, 2, 6, 8, 4, 1, 0, 9, 7, 6, 1, 1, 6, 9, 0, 6, 4, 2, 0, 6, 4, 1, 8, 8, 0, 6, 8, 9, 3, 7, 7, 6, 5, 4, 0, 6, 2, 9, 9, 5, 5, 4, 1, 9, 0, 9, 5, 3, 9, 8, 8, 8, 0, 3, 2, 5, 1, 4, 8, 2, 7, 0, 4, 6, 2, 8, 6, 4, 4, 2, 8, 7, 3, 6, 8, 4, 3, 2, 5, 4, 6, 2, 5, 3, 2, 7, 8, 0, 1, 4, 8, 1, 2, 5, 8, 9, 1, 4, 9
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			=7.639437268410976116906420641880689377654062995541909539888032514827...
		

Crossrefs

Programs

Formula

24/Pi = Sum_{k>=0} ( (30*k+7)*C(2*k,k)^2*(Hypergeometric2F1[1/2 - k/2, -k/2, 1, 64])/(-256)^k ). - Alexander R. Povolotsky, Dec 20 2012
Another version of this identity is: Sum[(30*k+7) * Binomial[2k,k]^2 * (Sum[Binomial[k-m,m] * Binomial[k,m] * 16^m, {m,0,k/2}])/(256)^k, {k,0,infinity}]. - Alexander R. Povolotsky, Jan 25 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 03 2009

A277235 Decimal expansion of 2/(Gamma(3/4))^4.

Original entry on oeis.org

8, 8, 6, 9, 4, 1, 1, 6, 8, 5, 7, 8, 1, 1, 5, 4, 0, 5, 4, 1, 1, 5, 2, 5, 3, 6, 1, 3, 5, 4, 5, 2, 1, 5, 3, 8, 6, 8, 6, 4, 9, 9, 9, 1, 9, 6, 4, 2, 5, 9, 8, 3, 4, 8, 3, 0, 9, 8, 6, 0, 9, 8, 9, 8, 1, 3, 1, 7, 8, 2, 5, 5, 9, 4, 8, 1, 9, 2, 7, 9, 7, 0, 6, 9, 1, 5, 2, 6, 4, 7, 7, 9, 4, 9, 8, 1, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

This is the value of one of Ramanujan's series: 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 -13*(1*3*5/(2*4*6))^5 + - ... . See the Hardy reference p.7. eq. (1.4) and pp. 105-106. For the partial sums see A278140.
The proof of Hardy and Whipple mentioned in the Hardy reference reduces this series to (2/Pi)*Morley's series (for m=1/2). For this series see A277232 and A091670.

Examples

			2/Gamma(3/4)^4 = 0.88694116857811540541152...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106, 111.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 2/(Gamma(3/4))^4; // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[2/(Gamma[3/4])^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    2/gamma(3/4)^4 \\ Michel Marcus, Nov 13 2016
    

Formula

Equals Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Equals A060294 * A091670.
For (1+4*k)*((2*k-1)!!/(2*k)!!)^5 see A074799(k) / A074800(k).
From Amiram Eldar, Jul 13 2023: (Start)
Equals (Gamma(1/4)/Pi)^4/2.
Equals A088538 * A014549^2.
Equals A263809/Pi. (End)

A301862 Decimal expansion of the probability of intersection of 2 random chords in a circle, where each chord is selected by a random point within the circle and a random direction.

Original entry on oeis.org

5, 8, 6, 6, 3, 6, 2, 9, 2, 4, 3, 9, 1, 7, 7, 7, 6, 1, 9, 4, 3, 0, 3, 1, 9, 9, 1, 3, 5, 7, 6, 5, 2, 4, 3, 0, 5, 9, 4, 2, 3, 0, 2, 7, 0, 0, 1, 3, 9, 4, 9, 7, 0, 5, 4, 4, 7, 3, 5, 5, 9, 1, 3, 0, 6, 8, 7, 6, 6, 1, 3, 5, 7, 3, 8, 9, 2, 1, 9, 3, 6, 3, 1, 1, 3, 5, 6
Offset: 1

Views

Author

Amiram Eldar, Mar 28 2018

Keywords

Examples

			0.58663629243917776194303199135765243059423027001394...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/3 + 5/(2*Pi^2), 10, 100][[1]]
  • PARI
    1/3 + 5/(2*Pi^2) \\ Altug Alkan, Mar 28 2018

Formula

Equals 1/3 + 5/(2*Pi^2).

A000095 Number of fixed points of GAMMA_0 (n) of type i.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 2*x^5 + 4*x^10 + 2*x^13 + 2*x^17 + 2*x^25 + 4*x^26 + 2*x^29 + ...
		

References

  • Bruno Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 101.
  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (2).

Crossrefs

Programs

  • Haskell
    a000095 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f 2 e = if e == 1 then 2 else 0
       f p _ = if p `mod` 4 == 1 then 2 else 0
    -- Reinhard Zumkeller, Mar 24 2012
    
  • Maple
    A000095 := proc(n) local b,d: if irem(n,4) = 0 then RETURN(0); else b := 1; for d from 2 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1+legendre(-1,d)); fi; od; RETURN(b); fi: end;
  • Mathematica
    A000095[ 1 ] = 1; A000095[ n_Integer ] := If[ Mod[ n, 4 ]==0, 0, Fold[ #1*(1+JacobiSymbol[ -1, #2 ])&, If[ EvenQ[ n ], 2, 1 ], Select[ First[ Transpose[ FactorInteger[ n ] ] ], OddQ ] ] ]
    a[ n_] := If[ n < 1, 0, Times @@ (Which[# == 1, 1, # == 2, 2 Boole[#2 == 1], Mod[#, 4] == 1, 2, True, 0] & @@@ FactorInteger[n])]; (* Michael Somos, Nov 15 2015 *)
  • PARI
    {a(n) = my(t); if( n<=1 || n%4==0, n==1, t=1; fordiv(n, d, if( isprime(d), t *= (1 + kronecker(-1, d)))); t)}; /* Michael Somos, Jul 15 2004 */
    
  • PARI
    A000095(n)=n%3 && n%4 && n%7 && n%11 && return(prod(k=1,#n=factor(n)[,1],1+kronecker(-1,n[k]))) /* the n%4 is needed, the others only reduce execution time by 34% */ \\ M. F. Hasler, Mar 24 2012
    
  • Python
    from sympy import primefactors
    def A000095(n): return 0 if n%4==0 or (f:=primefactors(n)) and any(p%4==3 for p in f) else 2**len(f) # David Radcliffe, Aug 20 2025

Formula

a(n) is multiplicative with a(2) = 2, a(2^e) = 0 if e>1, a(p^e) = 2 if p == 1 mod 4 and a(p^e) = 0 if p == 3 mod 4. - Michael Somos, Jul 15 2004
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2/Pi = 0.636619... (A060294). - Amiram Eldar, Oct 15 2022

Extensions

Values a(1)-a(10^4) double checked by M. F. Hasler, Mar 24 2012
Previous Showing 21-30 of 58 results. Next