cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A243758 a(n) = Product_{i=1..n} A234959(i).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 36, 36, 36, 36, 36, 36, 216, 216, 216, 216, 216, 216, 1296, 1296, 1296, 1296, 1296, 1296, 7776, 7776, 7776, 7776, 7776, 7776, 279936, 279936, 279936, 279936, 279936, 279936, 1679616, 1679616, 1679616, 1679616, 1679616, 1679616, 10077696
Offset: 0

Views

Author

Tom Edgar, Jun 10 2014

Keywords

Comments

This is the generalized factorial for A234959.
a(0) = 1 as it represents the empty product.

Crossrefs

Programs

  • Haskell
    a243758 n = a243758_list !! n
    a243758_list = scanl (*) 1 a234959_list
    -- Reinhard Zumkeller, Feb 09 2015
    
  • Mathematica
    Table[Product[6^IntegerExponent[k, 6], {k, 1, n}], {n, 0, 20}] (* G. C. Greubel, Dec 24 2016 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=6^valp(n,6) \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    S=[0]+[6^valuation(i,6) for i in [1..100]]
    [prod(S[1:i+1]) for i in [0..99]]
    

Formula

a(n) = Product_{i=1..n} A234959(i).
a(n) = 6^(A054895(n)).

A375931 The product of the prime powers in the prime factorization of n that have an exponent that is equal to the maximum exponent in this factorization.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 13, 14, 15, 16, 17, 9, 19, 4, 21, 22, 23, 8, 25, 26, 27, 4, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 8, 41, 42, 43, 4, 9, 46, 47, 16, 49, 25, 51, 4, 53, 27, 55, 8, 57, 58, 59, 4, 61, 62, 9, 64, 65, 66, 67, 4, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2024

Keywords

Comments

Differs from A327526 at n = 12, 20, 28, 40, 44, 45, ... .
Each positive number appears in this sequence either once or infinitely many times:
1. If m is squarefree then the only solution to a(x) = m is x = m.
2. If m = s^k is a power of a squarefree number s with k >= 2, then x = m * i is a solution to a(x) = m for all numbers i that are k-free numbers (i.e., having exponents in their prime factorizations that are all less than k) that are coprime to m.

Examples

			180 = 2^2 * 3^2 * 5, and the maximum exponent in the prime factorization of 180 is 2, which is the exponent of its prime factors 2 and 3. Therefore a(180) = 2^2 * 3^2 = (2*3)^2 = 36.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[n], p, e, i, m}, p = f[[;; , 1]]; e = f[[;; , 2]]; m = Max[e]; i = Position[e, m] // Flatten; (Times @@ p[[i]])^m]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2], m); if(n == 1, 1, m = vecmax(e); prod(i = 1, #p, if(e[i] == m, p[i], 1))^m);}

Formula

If n = Product_{i} p_i^e_i (where p_i are distinct primes) then a(n) = Product_{i} p_i^(e_i * [e_i = max_{j} e_j]), where [] is the Iverson bracket.
a(n) = A261969(n)^A051903(n).
a(n) = n / A375932(n).
a(n) = n if and only if n is a power of a squarefree number (A072774).
A051903(a(n)) = A051903(n).
omega(a(n)) = A362611(n).
omega(a(n)) = 1 if and only if n is in A356862.
Omega(a(n)) = A051903(n) * A362611(n).
a(n!) = A060818(n) for n != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/Pi^2 = 0.303963... (A104141).

A118381 Largest 3-smooth number dividing n!.

Original entry on oeis.org

1, 2, 6, 24, 24, 144, 144, 1152, 10368, 20736, 20736, 248832, 248832, 497664, 1492992, 23887872, 23887872, 429981696, 429981696, 1719926784, 5159780352, 10319560704, 10319560704, 247669456896, 247669456896, 495338913792, 13374150672384, 53496602689536, 53496602689536
Offset: 1

Views

Author

Reinhard Zumkeller, May 16 2006

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_, b_] := Sum[IntegerExponent[k, b], {k, 1, n}]; a[n_] := 2^s[n, 2] * 3^s[n, 3]; Array[a, 30] (* Amiram Eldar, Jan 29 2020 *)

Formula

a(n) = A060818(n) * A060828(n).

Extensions

More terms from Amiram Eldar, Jan 29 2020

A124399 a(n) = 4^(n - bitcount(n)) where bitcount(n) = A000120(n).

Original entry on oeis.org

1, 1, 4, 4, 64, 64, 256, 256, 16384, 16384, 65536, 65536, 1048576, 1048576, 4194304, 4194304, 1073741824, 1073741824, 4294967296, 4294967296, 68719476736, 68719476736, 274877906944, 274877906944, 17592186044416, 17592186044416
Offset: 0

Views

Author

Wolfdieter Lang, Nov 10 2006

Keywords

Comments

Numerators of one half of norm square of monic Legendre polynomials p_n(x).
The denominators of these polynomials are given by A069955.
The rationals N2(n) = 2*a(n)/A069955(n) give the minimal norm square for real monic polynomials. The norm square is defined as integral over the interval [-1,+1] of the square of the polynomials. Cf. the Courant-Hilbert reference.

Examples

			Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...].
Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...].
		

References

  • Richard Courant and David Hilbert, Methoden der mathematischen Physik, Bd. I, 3, Auflage, Springer, 1993, pp. 73-74.

Crossrefs

Cf. A000120, A001790, A056982, A060818, A069955 (denominators of N2(n) as defined in the comments).

Programs

  • Julia
    bitcount(n) = sum(digits(n, base=2))
    a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019
  • Mathematica
    a[n_] := 4^(n - DigitCount[n, 2, 1]); Array[a, 25, 0] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n,n))^2); \\ Michel Marcus, Aug 11 2019
    

Formula

a(n) = numerator(N2(n)/2) with N2(n)/2:=(1/(2*n+1))*((2^n)/binomial(2*n,n))^2.
N2(n)/2 = (1/(2*n+1))*(1/L(n))^2 with L(n)= A001790(n)/A060818(n), the leading coefficient of the Legendre polynomial P_n(x), in lowest terms.
Bisection: a(2*n)=a(2*n+1) = A056982(n), n>=0.

Extensions

New name by Peter Luschny, Oct 01 2019

A336940 Number of odd divisors of n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 12, 12, 20, 30, 60, 72, 144, 216, 336, 336, 672, 864, 1728, 2160, 3200, 4800, 9600, 10560, 14784, 22176, 28224, 35280, 70560, 86400, 172800, 172800, 245760, 368640, 497664, 559872, 1119744, 1679616, 2363904, 2626560, 5253120, 6451200, 12902400, 16128000
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Examples

			The a(1) = 1 through a(8) = 12 divisors:
  1  1  1  1  1   1   1    1
        3  3  3   3   3    3
              5   5   5    5
              15  9   7    7
                  15  9    9
                  45  15   15
                      21   21
                      35   35
                      45   45
                      63   63
                      105  105
                      315  315
		

Crossrefs

A049606 gives the maximum among these divisors, with quotient A060818.
A337257 is the even version.
A000265 gives the maximum odd divisor of n.
A001227 counts odd divisors.
A183063 counts even divisors.
Factorial numbers: A000142, A022559, A027423 (divisors), A048656, A071626, A076716 (factorizations), A325272, A325273, A325617, A336414, A336498.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],OddQ]],{n,0,15}]
  • PARI
    a(n) = sumdiv(n!, d, d%2); \\ Michel Marcus, Aug 24 2020
    
  • PARI
    a(n) = numdiv(prod(k=1, n, k >> valuation(k, 2))); \\ Michel Marcus, Aug 27 2020

Formula

a(n) = A001227(n!).
a(n) = A000005(A049606(n)).
a(n) + A337257(n) = A027423(n) = A000005(n!).
From Seiichi Manyama, Aug 27 2020: (Start)
If p is odd prime, a(p) = 2 * a(p-1).
a(n) = A027423(n) / A113474(n) for n > 0. (End)

Extensions

a(36)-a(44) from Seiichi Manyama, Aug 26 2020

A082093 a(n) is the least number m such that (m+n)!/m! = (m+1)*(m+2)*...*(m+n) divides lcm(1,...,m).

Original entry on oeis.org

5, 13, 19, 32, 73, 89, 140, 199, 294, 468, 1072, 1072, 1072, 2161, 2976, 32805, 32806, 65732, 65732, 262153, 262154, 524457, 524640, 4194464, 4194464, 8388640, 8388640, 33554432, 33554432, 67108992, 67109088, 2147483659, 2147484110, 4294967312, 4294967312, 17179869209, 17179869210
Offset: 1

Views

Author

Labos Elemer, Apr 10 2003

Keywords

Comments

From David A. Corneth, Aug 30 2019: (Start)
As (m+1)*(m+2)*...*(m+n) is the product of n consecutive integers, it's divisible by n! and so a(n) >= 2^A011371(n) = A060818(n).
None of m+1..m+n are prime. (End)

Examples

			a(6)=89: lcm(1,...,89) = 718766754945489455304472257065075294400 is divisible by 625757605200 = 90*91*92*93*94*95 = (89+6)!/89! and the quotient is 1148634469597477063638686172.
For n=1 see A080765(1) = A082093(1).
		

Crossrefs

Programs

  • Mathematica
    k = 1; lc = 1; Do[While[lc = LCM[lc, k]; Mod[lc, (n + k)!/k! ] != 0, k++ ]; Print[{n, k}], {n, 0, 50}] (* Robert G. Wilson v, Apr 12 2006 *)

Extensions

a(16)-a(19) from Robert G. Wilson v, Apr 12 2006
a(20)-a(23) from Vaclav Kotesovec, Aug 30 2019
a(24)-a(37) from David A. Corneth, Aug 30 2019

A135354 a(0)=1, a(n) = largest divisor of n! that is coprime to a(n-1).

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 16, 315, 128, 2835, 256, 155925, 1024, 6081075, 2048, 638512875, 32768, 10854718875, 65536, 1856156927625, 262144, 194896477400625, 524288, 49308808782358125, 4194304, 3698160658676859375, 8388608, 1298054391195577640625, 33554432, 263505041412702261046875, 67108864
Offset: 0

Views

Author

Leroy Quet, Dec 07 2007

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n,a)
      local P,R,i;
      P:= select(t -> isprime(t) and igcd(t,a)=1, [2,seq(i,i=3..n,2)]);
      R:= map(proc(p) local k; add(floor(n/p^k), k=1 ..ilog[p](n)) end proc, P);
      mul(P[i]^R[i],i=1..nops(P));
    end proc:
    R:= 1: r:= 1: for i from 1 to 50 do r:= f(i,r); R:= R,r od:
    R; # Robert Israel, Jul 21 2024
  • Mathematica
    a = {1}; For[n = 1, n < 25, n++, AppendTo[a, Select[Divisors[n! ], GCD[a[[ -1]], # ] == 1 &][[ -1]]]]; a (* Stefan Steinerberger, Dec 10 2007 *)
    ldnf[{n_,a_}]:={n+1,Max[Select[Divisors[(n+1)!],CoprimeQ[#,a]&]]}; Transpose[ NestList[ldnf,{0,1},30]][[2]] (* Harvey P. Dale, Jan 21 2016 *)

Formula

a(2n) = the largest power of 2 that divides (2n)!. a(2n+1) = the largest odd divisor of (2n+1)! = (2n+1)!/a(2n).

Extensions

More terms from Stefan Steinerberger, Dec 10 2007
More terms from Robert Israel, Jul 21 2024

A227772 Sequence based on factorial representation converging to 1 in 2-adic numbers, and 0 in p-adic numbers for any other p.

Original entry on oeis.org

0, 1, 3, 9, 105, 225, 945, 36225, 76545, 2253825, 9511425, 89345025, 1526349825, 26434433025, 287969306625, 12057038618625, 179439357722625, 5870438207258625, 37882306735898625, 1984203913277210625, 11715811945983770625, 982443713208463130625, 15594453174317362970625
Offset: 1

Views

Author

Keywords

Comments

This is an example to show how a sequence can be constructed to converge to an arbitrary p-adic number chosen independently for each p.

Examples

			5! = 2^3 * 3 * 5. Solving for m == 1 (mod 2^3), 0 (mod 3) and 0 (mod 5), we get m == 105 (mod 120), so we take a(5) = 105.
The factorial base representation is ...114111.
		

Crossrefs

Programs

  • PARI
    a(n)=lift(chinese(Mod(1,denominator(polcoeff(pollegendre(n), n))),Mod(0,denominator(2^n/n!)))) /* Ralf Stephan, Aug 01 2013 */

Formula

Solve for a(n) == 1 (mod A060818(n)) and a(n) == 0 (mod A049606), taking the least nonnegative residue.

Extensions

More terms from Ralf Stephan, Aug 01 2013
More terms from Jinyuan Wang, Jan 16 2021

A360603 Triangle read by rows. T(n, k) = A360604(n, k) * A001187(k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 4, 0, 8, 6, 12, 38, 0, 64, 32, 48, 152, 728, 0, 1024, 320, 320, 760, 3640, 26704, 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256, 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592
Offset: 0

Views

Author

Peter Luschny, Feb 20 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,       1;
[2] 0,       1,      1;
[3] 0,       2,      2,     4;
[4] 0,       8,      6,    12,    38;
[5] 0,      64,     32,    48,   152,    728;
[6] 0,    1024,    320,   320,   760,   3640,   26704;
[7] 0,   32768,   6144,  3840,  6080,  21840,  160224,  1866256;
[8] 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A006125 Graphs on n labeled nodes, T(n+1, 1) and Sum_{k=0..n} T(n, k).
Cf. A054592 Disconnected labeled graphs with n nodes, Sum_{k=0..n-1} T(n, k).
Cf. A001187 Connected labeled graphs with n nodes, T(n, n).
Cf. A123903 Isolated nodes in all simple labeled graphs on n nodes, T(n+2, 2).
Cf. A053549 Labeled rooted connected graphs, T(n+1, n).
Cf. A275462 Leaves in all simple labeled connected graphs on n nodes T(n+2, n).
Cf. A060818 gcd_{k=0..n} T(n, k) = gcd(n!, 2^n).
Cf. A143543 Labeled graphs on n nodes with k connected components.
Cf. A095340 Total number of nodes in all labeled graphs on n nodes.
Cf. A360604, A360860 (accumulation triangle).

Programs

  • Maple
    T := (n, k) -> 2^binomial(n-k, 2)*binomial(n-1, k-1)*A001187(k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Based on the recursion:
    Trow := proc(n) option remember; if n = 0 then return [1] fi;
    seq(2^binomial(n-k, 2) * binomial(n-1, k-1) * Trow(k)[k+1], k = 1..n-1);
    2^(n*(n-1)/2) - add(j, j = [%]); [0, %%, %] end:
    seq(print(Trow(n)), n = 0..8);
  • Mathematica
    A001187[n_] := A001187[n] = 2^((n - 1)*n/2) - Sum[Binomial[n - 1, k]*2^((k - n + 1)*(k - n + 2)/2)*A001187[k + 1], {k, 0, n - 2}];
    T[n_, k_] := 2^Binomial[n - k, 2]*Binomial[n - 1, k - 1]*A001187[k];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 02 2023, after Peter Luschny in A001187 *)
  • Python
    from math import comb as binomial
    from functools import cache
    @cache
    def A360603Row(n: int) -> list[int]:
        if n == 0: return [1]
        s = [2 ** (((k - n + 1) * (k - n)) // 2) * binomial(n - 1, k - 1) * A360603Row(k)[k] for k in range(1, n)]
        b = 2 ** (((n - 1) * n) // 2) - sum(s)
        return [0] + s + [b]

Formula

T(n, k) = 2^binomial(n-k, 2)*binomial(n-1, k-1) * A001187(k).
Recursion over the rows of the triangle: Set row(0) = [1] where [.] denotes a 0-based list. Assume now all rows(j) for j < n computed, next compute r = [2^binomial(n-k, 2) * binomial(n-1, k-1) * row(k)[k] for k = 1..n-1] and s = 2^(n*(n-1)/2) - Sum(r). Then row(n) = [0] & r & [s], where '&' denotes the concatenation of lists. (See the Python program for an implementation.)
T(n, n) = A001187(n) (connected labeled graphs).
T(n-1, n) = A053549(n-1) for n >= 1 (labeled rooted connected graphs).
T(n, 1) = Sum_{k>=0} T(n-1, k) = A006125(n-1) for n >= 1 (all labeled graphs).
Sum_{k=0..n-1} T(n, k) = A054592(n) for n >= 1 (disconnected labeled graphs).
See additional formulas in the cross-references.

A371357 a(n) = 2^(n - HammingWeight(n)) * binomial(2*n, n).

Original entry on oeis.org

1, 2, 12, 40, 560, 2016, 14784, 54912, 1647360, 6223360, 47297536, 180590592, 2769055744, 10650214400, 82158796800, 317680680960, 19696202219520, 76467608616960, 594748067020800, 2316387208396800, 36135640450990080, 141101072237199360, 1103153837490831360
Offset: 0

Views

Author

Peter Luschny, Mar 23 2024

Keywords

Crossrefs

Programs

  • Maple
    HammingWeight := n -> add(convert(n, base, 2)):
    a := n -> 2^(n - HammingWeight(n))*binomial(2*n, n):
    seq(a(n), n = 0..22);
  • Mathematica
    Array[2^(# - DigitCount[#, 2, 1]) * Binomial[2*#, #] &, 25, 0] (* Paolo Xausa, Mar 31 2024 *)

Formula

a(n) = A060818(n) * A000984(n).
Previous Showing 21-30 of 32 results. Next