cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A005790 4-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 14, 462, 24024, 1662804, 140229804, 13672405890, 1489877926680, 177295473274920, 22661585038594320, 3073259571003214320, 438091463242348309440, 65166105157299311029200, 10056663345892631910888600, 1602608179958939072505281850, 262708662267696303439658400600
Offset: 0

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n,n,n,n). - Emeric Deutsch, May 13 2004
The prime terms (as defined in A268538) are 1, 1, 10, 320, 16764, 1171355, 99315236, 9691755128, 1053114415100, ... - R. J. Mathar, Feb 27 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.

Crossrefs

A row of A060854.
Cf. A000108 (Catalan numbers), A005789, A005791.

Programs

  • Magma
    [12*Factorial(4*n)/(Factorial(n)*Factorial(n+1)*Factorial(n+2) *Factorial(n+3)): n in [0..20]]; // Vincenzo Librandi, Nov 23 2018
    
  • Maple
    a:= n-> (4*n)! * mul(i!/(4+i)!, i=0..n-1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 25 2012
  • Mathematica
    Table[12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!), {n, 0, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)
  • PARI
    vector(20, n, n--; 12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [12*factorial(4*n)/(factorial(n)*factorial(n+1)*factorial(n+2) *factorial(n+3)) for n in range(20)] # G. C. Greubel, Nov 23 2018

Formula

a(n) = 12*(4*n)!/(n! *(n+1)! *(n+2)! *(n+3)!).
G.f.: 4_F_3 ( [ 1, 3/2, 5/4, 7/4 ]; [ 3, 4, 5 ]; 256 x ).
a(n) ~ 3*2^(8*n+3/2)/(Pi^(3/2)*n^(15/2)). - Vaclav Kotesovec, Nov 18 2016
E.g.f.: 3F3(1/4,1/2,3/4; 2,3,4; 256*x) - 1. - Ilya Gutkovskiy, Oct 13 2017
(n+3)*(n+2)*(n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 04 2018

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 23 2018

A005791 5-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 42, 6006, 1662804, 701149020, 396499770810, 278607172289160, 231471904322784840, 219738059326729823880, 232553551737813227594400, 269396678720275351794712800, 336839101096824285057473785200, 449620757769949216266129125515200
Offset: 0

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n,n,n,n,n). - Emeric Deutsch, May 13 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.

Crossrefs

A row of A060854.

Programs

  • Maple
    a:= n-> (5*n)! * mul(i!/(n+i)!, i=0..4):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    Table[288*(5*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!), {n, 1, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)

Formula

a(n) = 0!*1!*..*(k-1)! *(k*n)! / ( n!*(n+1)!*..*(n+k-1)! ) for k=5.
(n+4)*(n+3)*(n+2)*(n+1)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Aug 10 2015
G.f.: x*5F4(1,6/5,7/5,8/5,9/5;3,4,5,6;3125*x). - R. J. Mathar, Aug 10 2015
a(n) ~ 72*5^(5*n+1/2)/(Pi^2*n^12). - Vaclav Kotesovec, Nov 18 2016
E.g.f.: 4F4(1/5,2/5,3/5,4/5; 2,3,4,5; 3125*x). - Ilya Gutkovskiy, Oct 13 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 23 2017

A215292 T(n,k)=Number of permutations of 0..floor((n*k-1)/2) on even squares of an nXk array such that each row and column of even squares is increasing.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 10, 6, 1, 1, 10, 30, 30, 10, 1, 1, 20, 140, 280, 140, 20, 1, 1, 35, 420, 2100, 2100, 420, 35, 1, 1, 70, 2310, 23100, 60060, 23100, 2310, 70, 1, 1, 126, 6930, 210210, 1051050, 1051050, 210210, 6930, 126, 1, 1, 252, 42042, 2522520
Offset: 1

Views

Author

R. H. Hardin Aug 07 2012

Keywords

Comments

Table starts
.1...1.....1........1...........1..............1..................1
.1...2.....3........6..........10.............20.................35
.1...3....10.......30.........140............420...............2310
.1...6....30......280........2100..........23100.............210210
.1..10...140.....2100.......60060........1051050...........42882840
.1..20...420....23100.....1051050.......85765680.........5703417720
.1..35..2310...210210....42882840.....5703417720......2061378118800
.1..70..6930..2522520...814773960...577185873264....337653735859440
.1.126.42042.25729704.41227562376.48236247979920.173457547735792320

Examples

			Some solutions for n=5 k=4
..1..x..2..x....0..x..6..x....1..x..6..x....1..x..4..x....0..x..6..x
..x..0..x..4....x..3..x..4....x..0..x..3....x..0..x..3....x..1..x..2
..3..x..8..x....1..x..7..x....4..x..7..x....2..x..7..x....4..x..7..x
..x..6..x..7....x..5..x..8....x..2..x..8....x..5..x..6....x..3..x..9
..5..x..9..x....2..x..9..x....5..x..9..x....8..x..9..x....5..x..8..x
		

Crossrefs

Column 2 is A001405

Formula

f1=floor((k+1)/2)
f2=floor(k/2)
f3=floor((n+1)/2)
f4=floor(n/2)
T(n,k)=A060854(f1,f3)*A060854(f2,f4)*binomial(f1*f3+f2*f4,f1*f3)

A229345 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by the same positive integer; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 22, 4, 1, 1, 25, 248, 188, 8, 1, 1, 121, 6506, 11380, 1712, 16, 1, 1, 721, 292442, 2359348, 577124, 16098, 32, 1, 1, 5041, 19450082, 1088626684, 991365512, 30970588, 154352, 64, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2013

Keywords

Examples

			A(2,2) = 22: [(2,2),(1,1),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)], [(2,2),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(1,2),(1,0),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(0,2),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(0,1),(0,0)], [(2,2),(2,1),(2,0),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,0)], [(2,2),(2,0),(1,0),(0,0)], [(2,2),(2,0),(0,0)].
Square array A(n,k) begins:
  1,  1,     1,        1,            1,                 1, ...
  1,  1,     3,        7,           25,               121, ...
  1,  2,    22,      248,         6506,            292442, ...
  1,  4,   188,    11380,      2359348,        1088626684, ...
  1,  8,  1712,   577124,    991365512,     4943064622568, ...
  1, 16, 16098, 30970588, 453530591824, 25162900228200976, ...
		

Crossrefs

Columns k=0-3 give: A000012, A011782, A132595(n+1), A229482.
Rows n=0-2 give: A000012, A038507 (for k>1), A229465.
Main diagonal gives: A229346.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`(m=0 or l[m]=0, 1,
          `if`(m>1, add(b(l-[j$m]), j=1..l[1]), 0)+
          add(add(b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..m))
        end:
    A:= (n, k)-> b([n$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Sep 24 2013
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[m == 0 || l[[m]] == 0, 1, If[m > 1, Sum[b[l - Array[j&, m]], {j, 1, l[[1]]}],  0] + Sum[Sum[b[Sort[ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, m}]]]; a[n_, k_] := b[Array[n&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)

A181204 T(n,k) = 0!*1!*2!*...*(k-1)! *(n*k)! *k*(k-1)*n*(n-1) / 2*n!*(n+1)!*...*(n+k-1)!

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 0, 30, 30, 0, 0, 168, 756, 168, 0, 0, 840, 16632, 16632, 840, 0, 0, 3960, 360360, 1729728, 360360, 3960, 0, 0, 18018, 7876440, 199536480, 199536480, 7876440, 18018, 0, 0, 80080, 174594420, 25241364720, 140229804000, 25241364720
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

(Empricial) T(n,k)=Number of nXk matrices containing a defective permutation of 1..n*k in strictly increasing order rowwise and columnwise, with one permutation value omitted and one repeated (see example)
Formula is n*(n-1)*k*(k-1)/2 times n-th k-dimensional Catalan number
Table starts
.0.......0.............0....................0...........................0
.0.......4............30..................168.........................840
.0......30...........756................16632......................360360
.0.....168.........16632..............1729728...................199536480
.0.....840........360360............199536480................140229804000
.0....3960.......7876440..........25241364720.............118949931243000
.0...18018.....174594420........3445446284280..........117015012361447200
.0...80080....3926434512......500598983364480.......129624266420759510400
.0..350064...89492111280....76591644454765440....158211402715245473193600
.0.1511640.2064420294300.12237255920840932800.209298196564031904834960000

Examples

			Some solutions for 4X2
..2..4....1..4....1..3....1..3....2..5....1..3....1..3....2..4....1..2....1..3
..3..5....2..5....3..6....2..4....3..6....2..4....2..4....3..6....2..4....2..4
..5..7....6..7....4..7....4..6....4..7....4..5....4..7....5..7....3..5....4..7
..6..8....7..8....5..8....5..8....5..8....7..8....5..8....6..8....6..8....6..8
		

Crossrefs

Column 2 is twice A002740(n+1)
Cf. A060854 for permutation without defect.

A215297 T(n,k) = number of permutations of 0..floor((n*k-2)/2) on odd squares of an n X k array such that each row and column of odd squares is increasing.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 6, 6, 1, 1, 10, 30, 30, 10, 1, 1, 20, 70, 280, 70, 20, 1, 1, 35, 420, 2100, 2100, 420, 35, 1, 1, 70, 1050, 23100, 23100, 23100, 1050, 70, 1, 1, 126, 6930, 210210, 1051050, 1051050, 210210, 6930, 126, 1, 1, 252, 18018, 2522520, 14294280
Offset: 1

Views

Author

R. H. Hardin, Aug 07 2012

Keywords

Comments

Table starts
.1...1.....1........1...........1..............1.................1
.1...2.....3........6..........10.............20................35
.1...3.....6.......30..........70............420..............1050
.1...6....30......280........2100..........23100............210210
.1..10....70.....2100.......23100........1051050..........14294280
.1..20...420....23100.....1051050.......85765680........5703417720
.1..35..1050...210210....14294280.....5703417720......577185873264
.1..70..6930..2522520...814773960...577185873264...337653735859440
.1.126.18018.25729704.12547518984.48236247979920.43364386933948080
Even columns match A215292.
The first column is number of symmetric standard Young tableaux of shape (n), the second column is number of symmetric standard Young tableaux of shape (n,n) and the third column is number of symmetric standard Young tableaux of shape (n,n,n). - Ran Pan, May 21 2015

Examples

			Some solutions for n=5, k=4:
..x..0..x..4....x..0..x..1....x..1..x..3....x..0..x..6....x..0..x..1
..1..x..2..x....4..x..7..x....0..x..8..x....3..x..5..x....3..x..7..x
..x..3..x..8....x..2..x..3....x..2..x..5....x..1..x..7....x..2..x..5
..6..x..7..x....5..x..9..x....4..x..9..x....4..x..9..x....6..x..8..x
..x..5..x..9....x..6..x..8....x..6..x..7....x..2..x..8....x..4..x..9
		

Crossrefs

Column 2 is A001405. Column 4 is A215288. Column 6 is A215290.

Formula

f1=floor(k/2), f2=floor((k+1)/2), f3=floor((n+1)/2), f4=floor(n/2);
T(n,k) = A060854(f1,f3)*A060854(f2,f4)*binomial(f1*f3+f2*f4,f1*f3).

A321975 6-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 9490348077234178440, 67867669180627125604080, 583692803893929928888544400, 5838544419011620940996212276800, 66244124978105851196543024492572800, 836288764382254532915188713779640302400, 11570895443447601081407359451642915869302000
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2018

Keywords

Comments

Number of n X 6 Young tableaux.

Crossrefs

Programs

  • GAP
    List([0..15],n->34560*Factorial(6*n)/Product([0..5],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
  • Magma
    [34560*Factorial(6*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
    
  • Maple
    a:= n-> (6*n)! * mul(i!/(6+i)!, i=0..n-1):
    seq(a(n), n=0..14);  # Alois P. Heinz, Nov 25 2018
  • Mathematica
    Table[34560 (6 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)!), {n, 0, 60}] (* Vincenzo Librandi, Nov 24 2018 *)
  • PARI
    {a(n) = 34560*(6*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!)}
    

Formula

a(n) = 0!*1!*...*5! * (6*n)! / ( n!*(n+1)!*...*(n+5)! ).
a(n) ~ 5 * 2^(6*n + 6) * 3^(6*n + 7/2) / (Pi^(5/2) * n^(35/2)). - Vaclav Kotesovec, Nov 23 2018

A215288 Number of permutations of 0..floor((n*4-1)/2) on even squares of an n X 4 array such that each row and column of even squares is increasing.

Original entry on oeis.org

1, 6, 30, 280, 2100, 23100, 210210, 2522520, 25729704, 325909584, 3585005424, 47117214144, 546896235600, 7383099180600, 89212448432250, 1229149289511000, 15323394475903800, 214527522662653200, 2742051789669912720
Offset: 1

Views

Author

R. H. Hardin, Aug 07 2012

Keywords

Examples

			Some solutions for n=5
..2..x..4..x....0..x..3..x....2..x..3..x....0..x..5..x....1..x..4..x
..x..0..x..1....x..2..x..5....x..0..x..4....x..1..x..3....x..0..x..6
..3..x..7..x....1..x..6..x....5..x..6..x....6..x..7..x....2..x..5..x
..x..6..x..9....x..4..x..7....x..1..x..8....x..2..x..4....x..3..x..8
..5..x..8..x....8..x..9..x....7..x..9..x....8..x..9..x....7..x..9..x
		

Crossrefs

Column 4 of A215292.

Formula

f3=floor((n+1)/2),
f4=floor(n/2),
a(n) = A060854(2,f3)*A060854(2,f4)*binomial(2*f3+2*f4,2*f3).

A321976 7-dimensional Catalan numbers.

Original entry on oeis.org

1, 1, 429, 1385670, 13672405890, 278607172289160, 9490348077234178440, 475073684264389879228560, 32103104214166146088869942000, 2760171874087743799855959353857200, 289232890341906497299306268771988273600, 35764585916110766978895474668714467232388000
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2018

Keywords

Comments

Number of n X 7 Young tableaux.

Crossrefs

Programs

  • GAP
    List([0..15],n->24883200*Factorial(7*n)/Product([0..6],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
  • Magma
    [24883200*Factorial(7*n) / (Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
    
  • Mathematica
    Table[24883200*(7*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!*(n+6)!),{n,0,15}] (* Vincenzo Librandi, Nov 24 2018 *)
  • PARI
    {a(n) = 24883200*(7*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!*(n+6)!)}
    

Formula

a(n) = 0!*1!*...*6! * (7*n)! / ( n!*(n+1)!*...*(n+6)! ).
a(n) ~ 3110400 * 7^(7*n + 1/2) / (Pi^3 * n^24). - Vaclav Kotesovec, Nov 23 2018

A374985 Array read by antidiagonals: T(n,k) is the number of n X k matrices whose values cover an initial interval of positive integers and whose rows and columns have values which are strictly increasing.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 45, 197, 45, 1, 1, 1, 1, 197, 4593, 4593, 197, 1, 1, 1, 1, 903, 126289, 732963, 126289, 903, 1, 1, 1, 1, 4279, 3888343, 155242003, 155242003, 3888343, 4279, 1, 1, 1, 1, 20793, 130016393, 40007492715, 289599115433, 40007492715, 130016393, 20793, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Sep 16 2024

Keywords

Comments

T(n,k) is the number of normal generalized Young tableaux with all rows and columns strictly increasing whose shape is a rectangle of size n X k (cf. A299968). - Ludovic Schwob, Nov 18 2024

Examples

			Array begins:
=====================================================================
n/k | 0 1   2       3           4               5               6 ...
----+----------------------------------------------------------------
  0 | 1 1   1       1           1               1               1 ...
  1 | 1 1   1       1           1               1               1 ...
  2 | 1 1   3      11          45             197             903 ...
  3 | 1 1  11     197        4593          126289         3888343 ...
  4 | 1 1  45    4593      732963       155242003     40007492715 ...
  5 | 1 1 197  126289   155242003    289599115433 723253222084867 ...
  6 | 1 1 903 3888343 40007492715 723253222084867 ...
...
The T(2,3) = 11 matrices are:
  [1 2 3]  [1 2 3]  [1 2 3]  [1 2 3]  [1 2 4]  [1 2 4]
  [2 3 4]  [2 4 5]  [3 4 5]  [4 5 6]  [2 3 5]  [3 4 5]
.
  [1 2 4]  [1 2 5]  [1 3 4]  [1 3 4]  [1 3 5]
  [3 5 6]  [3 4 6]  [2 4 5]  [2 5 6]  [2 4 6]
		

Crossrefs

Columns k=1..4 are A000012, A001003, A105124, A374985.
Main diagonal is A374514.
Cf. A060854 (case all values also distinct), A299968.

Programs

  • PARI
    \\ See PARI link in A374514 for program code.
    for(n=0, 7, print(vector(7, k, A374985(n, k-1))))

Formula

T(n,k) = T(k,n).
Previous Showing 11-20 of 39 results. Next