A293946
a(n) = number of lattice paths from (0,0) to (3n,2n) which lie wholly below the line 3y=2x, only touching at the endpoints.
Original entry on oeis.org
1, 2, 19, 293, 5452, 112227, 2460954, 56356938, 1332055265, 32251721089, 795815587214, 19939653287183, 505943824579282, 12974266405435153, 335717028959470883, 8754495459668971998, 229836484204401559180, 6069875377376291350173, 161145418968823760038557
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..687 (corrected by Ray Chandler, Jan 19 2019)
- M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62.[Cached copy; Annotated copy of page 59]
- Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
-
f:= proc(n) local U,x,y;
U:= Array(1..3*n,0..2*n);
U[3*n,2*n]:= 1:
for x from 3*n to 1 by -1 do
for y from ceil(2/3*x)-1 to 0 by -1 do
if x+1 <= 3*n then U[x,y]:= U[x+1,y] fi;
if y+1 < 2/3*x or x=3*n then U[x,y]:= U[x,y]+U[x,y+1] fi;
od od:
U[1,0];
end proc:
map(f, [$1..30]); # Robert Israel, Oct 24 2017
-
T[, 0] = 1; T[n, k_] := T[n, k] = Which[0 < k < 2(n-1)/3, T[n-1, k] + T[n, k-1], 2(n-1) <= 3k <= 2n, T[n, k-1]];
a[n_] := T[3n, 2n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2018, after Danny Rorabaugh *)
A300387
The number of paths of length 9*n from the origin to the line y = 2*x/7 with unit East and North steps that stay below the line or touch it.
Original entry on oeis.org
1, 4, 178, 11654, 900239, 76266406, 6853777795, 641688752961, 61916364799849, 6113859987916630, 614832988424140624, 62752222758863566993, 6483650829899569496380, 676834416167597357806799, 71278487569046416052210050, 7563527671079260544924794587, 807900192360879042402313084390
Offset: 0
For n=1, the possible walks are EEEEEEENN, EEEEEENEN, EEEEENEEN, EEEENEEEN.
- M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy]
- Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
-
terms = 17; f[_] = 0;
Do[f[t_] = f[t]^36 t^4 + 3 f[t]^29 t^3 - f[t]^28 t^3 + 4 f[t]^27 t^3 + 3 f[t]^22 t^2 - 2 f[t]^21 t^2 + 6 f[t]^20 t^2 - 3 f[t]^19 t^2 + 6 f[t]^18 t^2 + f[t]^15 t - f[t]^14 t + 2 f[t]^13 t - 2 f[t]^12 t + 3 f[t]^11 t - 3 f[t]^10 t + 4 f[t]^9 t + 1 + O[t]^terms, {terms}];
CoefficientList[f[t], t] (* Jean-François Alcover, Dec 04 2018 *)
nmax = 20; CoefficientList[Series[Exp[Sum[Binomial[9*k, 2*k]*x^k/(9*k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2021 *)
A381772
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 11, 83, 727, 6940, 70058, 735502, 7949031, 87851819, 988307647, 11279719247, 130286197186, 1520108988221, 17889102534329, 212095541328931, 2531001870925559, 30376237591559863, 366417240105654587, 4440000077166319993, 54020150448778625847, 659665548217188211288
Offset: 0
A300388
The number of paths of length 11*n from the origin to the line y = 2*x/9 with unit East and North steps that stay below the line or touch it.
Original entry on oeis.org
1, 5, 345, 35246, 4255288, 563796161, 79264265868, 11612106079203, 1753402118587333, 270965910076404428, 42648418241303137766, 6813002989827352100145, 1101807202785456951146158, 180034116076502209139781574, 29677341363243548521326632028, 4929368173228370040701922315332
Offset: 0
For n=1, the walks are EEEEEEEEENN, EEEEEEEENEN, EEEEEEENEEN, EEEEEENEEEN, EEEEENEEEEN.
- M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy]
- Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
-
terms = 16; f[_] = 0;
Do[f[t_] = f[t]^55 t^5 + 4 f[t]^46 t^4 - f[t]^45 t^4 + 5 f[t]^44 t^4 + 6 f[t]^37 t^3 - 3 f[t]^36 t^3 + 12 f[t]^35 t^3 - 4 f[t]^34 t^3 + 10 f[t]^33 t^3 + 4 f[t]^28 t^2 - 3 f[t]^27 t^2 + 9 f[t]^26 t^2 - 6 f[t]^25 t^2 + 12 f[t]^24 t^2 - 6 f[t]^23 t^2 + 10 f[t]^22 t^2 + f[t]^19 t - f[t]^18 t + 2 f[t]^17 t - 2 f[t]^16 t + 3 f[t]^15 t - 3 f[t]^14 t + 4 f[t]^13 t - 4 f[t]^12 t + 5 f[t]^11 t + 1 + O[t]^terms, {terms}];
CoefficientList[f[t], t] (* Jean-François Alcover, Dec 04 2018 *)
nmax = 20; CoefficientList[Series[Exp[Sum[Binomial[11*k, 2*k]*x^k/(11*k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2021 *)
A381774
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^4 ) )^(1/4), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 19, 255, 3995, 68344, 1237526, 23316295, 452385355, 8977539540, 181374792040, 3718002102747, 77138798530854, 1616741658725930, 34179703551312530, 728019711835819493, 15608122038151106507, 336551042553481867640, 7293934071668996347055
Offset: 0
A381753
Expansion of exp( Sum_{k>=1} binomial(5*k-1,2*k-1) * x^k/k ).
Original entry on oeis.org
1, 4, 50, 846, 16495, 349240, 7803823, 181135830, 4324897697, 105543188190, 2620784850325, 66005699547352, 1682046970846570, 43291586055360034, 1123707191010320955, 29382536610737191930, 773229801368332554273, 20463493681189771623960
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, binomial(5*k-1, 2*k-1)*x^k/k)))
-
a(n) = 2*sum(k=0, n, binomial(5*n+2*k+2, k)*binomial(5*n+2, n-k)/(5*n+2*k+2));
A381775
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^6 ) )^(1/6), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 27, 523, 11871, 294668, 7747698, 212054604, 5978347887, 172421233231, 5063192676597, 150872475295522, 4550458484780442, 138652322209300991, 4261638256558924407, 131973650298641750844, 4113788296015093994719, 128973000885015536107140
Offset: 0
A322634
Sum of attendance numbers of all histories of length 5*n in the Bizley-Duchon's club model, divided by 5.
Original entry on oeis.org
5, 153, 4537, 133189, 3891675, 113415423, 3299905647
Offset: 1
a(1) = (15 + 10)/5 = 5:
Contributions of the A293946(1) = 2 attendance histories are
0 (+2) 2 (+2) 4 (+2) 6 (-3) 3 (-3) 0 -> 2 + 4 + 6 + 3 = 15
0 (+2) 2 (+2) 4 (-3) 1 (+2) 3 (-3) 0 -> 2 + 4 + 1 + 3 = 10.
- Cyril Banderier, Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths: Enumeration and Asymptotics for the Area. Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.345-356, 2006, DMTCS Proceedings.
- Cyril Banderier, Michael Wallner, Lattice paths of slope 2/5, arXiv:1605.02967 [cs.DM], 10 May 2016.
A257995
Forests of binary shrubs on 3n vertices avoiding 321.
Original entry on oeis.org
1, 2, 37, 866, 23285, 679606, 20931998, 669688835, 22040134327, 741386199872, 25376258521393, 880977739374392, 30946637156662975, 1097929752363923490, 39284677690031136567, 1415992852373003788459
Offset: 0
- David Bevan, Table of n, a(n) for n = 0..993
- D Bevan, D Levin, P Nugent, J Pantone, L Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036, 2015
- M. Riehl, Forests of binary shrubs avoiding patterns of length 3
-
gf := RootOf(_Z^10*z^10+18*_Z^9*z^9+123*_Z^8*z^8+(-3*z^8+420*z^7+54*z^6)*_Z^7+(-36*z^7+751*z^6+486*z^5)*_Z^6+(-138*z^6+354*z^5+1053*z^4)*_Z^5+(3*z^6-228*z^5-213*z^4+162*z^3+729*z^2)*_Z^4+(18*z^5-215*z^4+2*z^3-360*z^2)*_Z^3+(15*z^4+24*z^3-71*z^2-54*z)*_Z^2+(-z^4+24*z^3-8*z^2+54*z-1)*_Z+4*z^2+4*z+1)^(1/2):
seq(coeff(series(gf,z,21),z,i),i=0..20);
-
b[k_]:=k(k+1)/2;n[k_]:=n[k]=Join[{b[k+1],b[k+1]-1},Table[b[i],{i,k,1,-1}],{1}];v[1]={1,0,1};v[k_]:=v[k]=Module[{s=MapIndexed[#1n[First@#2]&,v[k-1]]},Table[Total[If[i>Length@#,0,#[[i]]]&/@s],{i,Length@Last@s}]];a[k_]:=a[k]=Total@v[k];Array[a,20] (* David Bevan, Oct 27 2015 *)
A259550
a(n) = C(5*n-1,2*n)/3, n > 0, a(0) = 1.
Original entry on oeis.org
1, 2, 42, 1001, 25194, 653752, 17298645, 463991880, 12570420330, 343176898988, 9425842448792, 260170725132045, 7210477496434485, 200519284375732896, 5592628786362932776, 156375886125188595376, 4382048530314336892010, 123033460966787345446836
Offset: 0
- D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence, Vol. 15 (2012), article 12.9.3.
- V. V. Kruchinin and D. V. Kruchinin, Composita and its properties, J. Analysis and Number Theory 2 (2014), 1-8.
- V. V. Kruchinin and D. V. Kruchinin, A Generating Function for the Diagonal T_{2n,n} in Triangles, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.6.
- D. V. Kruchinin, On solving some functional equations, Advances in Difference Equations, Vol. 1 (2015), 1687-1847.
-
[1] cat [Binomial(5*n-1, 2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
-
Join[{1}, Table[Binomial[5 n - 1, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
-
makelist(if n=0 then 1 else binomial(5*n-1,2*n)/3,n,0,20);
-
vector(20, n, n--; if (n==0, 1, binomial(5*n-1,2*n)/3)) \\ Michel Marcus, Jul 01 2015
Comments