A082916 Numbers k such that k and binomial(2*k, k) are relatively prime.
0, 1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 79, 81, 83, 89, 93, 97, 101, 103, 107, 109, 111, 113, 119, 121, 125, 127, 131, 137, 139, 149, 151, 155, 157, 161, 163, 167, 169, 173, 179, 181, 185, 191, 193, 197
Offset: 1
Keywords
References
- J. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quarterly J. of Pure and Applied Math. 30 (1899), 150-156.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[0, 100], CoprimeQ[Binomial[2*#, #], #] &] (* Amiram Eldar, May 24 2020 *)
-
PARI
isok(n) = gcd(n, binomial(2*n, n)) == 1; \\ Michel Marcus, Dec 04 2013
-
Python
from math import gcd A082916_list, b = [], 1 for n in range(10**5): if gcd(n,b) == 1: A082916_list.append(n) b = b*(4*n+2)//(n+1) # Chai Wah Wu, Mar 25 2016
Formula
It seems that a(n) is asymptotic to c*n*log(n) with 0.7
A087688 a(n) = number of solutions to x^3 - x == 0 (mod n).
1, 2, 3, 3, 3, 6, 3, 5, 3, 6, 3, 9, 3, 6, 9, 5, 3, 6, 3, 9, 9, 6, 3, 15, 3, 6, 3, 9, 3, 18, 3, 5, 9, 6, 9, 9, 3, 6, 9, 15, 3, 18, 3, 9, 9, 6, 3, 15, 3, 6, 9, 9, 3, 6, 9, 15, 9, 6, 3, 27, 3, 6, 9, 5, 9, 18, 3, 9, 9, 18
Offset: 1
Comments
Shadow transform of A007531. - Michel Marcus, Jun 06 2013
a(n) = 3 iff n belongs to (A061345 \ {1}) Union {4}. - Bernard Schott, Sep 16 2019
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..10000
- Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
- N. J. A. Sloane, Transforms.
Programs
-
Maple
A087688 := proc(n) local a,x ; a := 0 ; for x from 0 to n-1 do if (x*(x^2-1)) mod n = 0 then a := a+1 ; end if; end do; a ; end proc: seq(A087688(n),n=1..70) ; # R. J. Mathar, Jan 07 2011
-
Mathematica
nsols[n_]:=Length[Select[Range[0,n-1],Mod[#^3-#,n]==0&]]; nsols/@Range[80] (* Harvey P. Dale, Mar 22 2011 *) f[2, e_] := Which[e == 1, 2, e == 2, 3, e >= 3, 5]; f[p_, e_] := 3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
-
PARI
a(n)=if(n%2,3^omega(n),my(v=valuation(n,2));3^omega(n>>v)*[2,3,5][min(3,v)]) \\ Charles R Greathouse IV, Mar 22 2011
Formula
Multiplicative with a(p^e) = 3 for p an odd prime, a(2^1) = 2, a(2^2) = 3, a(2^e) = 5 for e >= 3. - Eric M. Schmidt, Apr 08 2013
A115233 Primes p which have a unique representation as p = 2^i + q^j where i >= 0, j >= 1, q = odd prime.
5, 127, 163, 179, 191, 193, 223, 239, 251, 269, 311, 337, 389, 419, 431, 457, 491, 547, 557, 569, 599, 613, 653, 659, 673, 683, 719, 739, 787, 821, 839, 853, 883, 911, 929, 953, 967, 977, 1117, 1123, 1201, 1229, 1249, 1283, 1289, 1297, 1303, 1327, 1381, 1409, 1423, 1439, 1451, 1471, 1481, 1499
Offset: 1
Keywords
Examples
5 = 2+3 belongs to the sequence, but 23 = 2^2+19^1 = 2^4+7^1 does not.
Programs
-
Mathematica
maxp = 1500; Clear[cnt]; cnt[_] = 0; pp = Prime[Range[PrimePi[maxp]]]; Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], cnt[p] = cnt[p] + 1], {i, 0, Log[2, maxp] // Ceiling}, {j, 1, Log[3, maxp] // Ceiling}, {q, Rest[pp]} ]; Select[pp, cnt[#] == 1&] (* Jean-François Alcover, Aug 04 2018 *)
Extensions
Edited by N. J. A. Sloane, Apr 30 2010
Data corrected by Jean-François Alcover, Aug 04 2018
A118112 a(n) = binomial(3n,n) mod (n+1).
1, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 35, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 41, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Comments
These divisibilities are analogous to those of Catalan numbers. For rather long sequences of consecutive integers, a(n)=0. For the first 10000 integers 9678 residues equals zero. See A118113.
If n+1 is in A061345, a(n)=0. This follows from Kummer's theorem. - Robert Israel, May 09 2018
Examples
For n=9, binomial(27,7) = 4686825; 4686825 mod 10 = 5.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Kummer's theorem
Programs
-
Maple
seq(binomial(3*n,n) mod (n+1), n=1..200); # Robert Israel, May 09 2018
-
Mathematica
Table[Mod[Binomial[3*k,k],k+1],{k,500}]
-
PARI
a(n) = binomial(3*n, n) % (n+1); \\ Michel Marcus, May 10 2018
Formula
a(n) = binomial(3n,n) mod (n+1).
Extensions
Mathematica program corrected by Harvey P. Dale, Dec 28 2012
A132213 Number of distinct primes among the squares mod n.
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 1, 3, 0, 0, 2, 2, 4, 1, 1, 3, 3, 0, 2, 4, 3, 0, 4, 1, 4, 1, 2, 4, 2, 1, 3, 6, 2, 0, 5, 2, 6, 2, 2, 7, 5, 0, 6, 5, 3, 3, 8, 6, 3, 0, 3, 6, 8, 0, 6, 8, 3, 2, 2, 3, 7, 3, 3, 2, 7, 0, 9, 10, 3, 4, 6, 4, 9, 1, 10, 10, 11, 1, 2, 13, 3, 0, 10, 4, 5, 4, 4, 13, 4, 1, 11, 10, 4, 4
Offset: 1
Comments
It appears that a(n)=0 for only the 30 numbers in A065428, which appears to be related to idoneal numbers, A000926. The graph shows a(n) can be quite small even for large n. For example, a(9240)=7. Observe that the graph up to n=10000 appears to have 5 components. Why?
The logarithmic plot of the first 10^6 terms shows seven components.
From Rémy Sigrist, Nov 28 2017: (Start)
Empirically, in the logarithmic plot of the sequence:
- the set of indices of the first component (starting from the top), say S_1, is the union of A061345 and of A278568,
- the set of indices of the n-th component (for n > 1), say S_n, contains the numbers k not in a previous component and such that (omega(k) = n-1) or (omega(k) = n and val(k) = 0 or 2) or (omega(k) = n+1 and val(k) = 1) (where omega(k) = A001221(k) and val(k) = A007814(k)),
- see logarithmic scatterplot colored according to this scheme in Links section.
(End)
Examples
For n=14, the squares (mod n) repeat 0,1,4,9,2,11,8,7,8,11,2,9,4,1,0,..., a sequence containing three distinct primes: 2, 7 and 11. Hence a(14)=3.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- T. D. Noe, Logarithmic plot of 10^6 terms
- Rémy Sigrist, Colored logarithmic plot of 2*10^6 terms
Crossrefs
Programs
-
Haskell
import Data.List (nub, genericTake) a132213 n = sum $ map a010051' $ nub $ genericTake n $ map (`mod` n) $ tail a000290_list -- Reinhard Zumkeller, Jun 23 2015, Oct 15 2011
-
Mathematica
Table[s=Union[Mod[Range[n]^2,n]]; Length[Select[s,PrimeQ]], {n,10000}] Table[Count[Union[PowerMod[Range[n],2,n]],?PrimeQ],{n,100}] (* _Harvey P. Dale, Mar 02 2018 *)
A280152 Expansion of Product_{k>=1} (1 + floor(1/omega(2*k+1))*x^(2*k+1)), where omega() is the number of distinct prime factors (A001221).
1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 3, 3, 3, 3, 4, 4, 5, 4, 6, 6, 6, 7, 7, 9, 8, 9, 10, 11, 12, 11, 14, 14, 16, 15, 18, 19, 19, 21, 22, 25, 25, 27, 28, 32, 32, 34, 36, 40, 41, 42, 47, 49, 52, 53, 57, 62, 63, 67, 71, 76, 79, 82, 88, 93, 98, 100, 108, 114, 118, 124
Offset: 0
Keywords
Comments
Number of partitions of n into distinct odd prime powers (1 excluded).
Examples
a(16) = 3 because we have [13, 3], [11, 5], [9, 7].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Prime Power
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 78; CoefficientList[Series[Product[1 + Floor[1/PrimeNu[2 k + 1]] x^(2 k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} (1 + floor(1/omega(2*k+1))*x^(2*k+1)).
A316553 Number of elements of order 2 in the group SL(2, Z(n)).
0, 3, 1, 7, 1, 7, 1, 15, 1, 7, 1, 15, 1, 7, 3, 15, 1, 7, 1, 15, 3, 7, 1, 31, 1, 7, 1, 15, 1, 15, 1, 15, 3, 7, 3, 15, 1, 7, 3, 31, 1, 15, 1, 15, 3, 7, 1, 31, 1, 7, 3, 15, 1, 7, 3, 31, 3, 7, 1, 31, 1, 7, 3, 15, 3, 15, 1, 15, 3, 15, 1, 31, 1, 7, 3, 15, 3, 15, 1
Offset: 1
Keywords
Comments
Equivalently, the number of cyclic subgroups of the group SL(2, Z(n)) having order 2, counting conjugates as distinct.
Examples
Case n=2: the three 2 X 2 matrices on Z(2) having determinant 1 and order 2 are: [ 0 1 ] [ 1 0 ] [ 1 1 ] [ 1 0 ] [ 1 1 ] [ 0 1 ]
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1023
Programs
-
GAP
Concatenation([0], List([2..10], n->Sum(Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->Order( Representative(x))=2 and IsCyclic( Representative(x))), Size)));
-
PARI
a(n)={my(id=matid(2)); sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, M^2==id))))) - 1}
-
PARI
memoA316553 = Map(); \\ Only values at 2^k are actually collected here. A316553slow_memoized(n) = if(1==n, 0, if((n%2)&&isprimepower(n), 1, my(id=matid(2), v); if(mapisdefined(memoA316553,n,&v), v, v = (sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, M^2==id))))) - 1); mapput(memoA316553,n,v); (v)))); A316553(n) = if(1==n,0,my(f=factor(n)); -1 + prod(i=1,#f~,1+A316553slow_memoized(f[i,1]^f[i,2]))); \\ (Based on Robert Israel's multiplicativity rule) - Antti Karttunen, Dec 05 2021
Formula
Conjecture: a(n) = 2^(omega(n) + min(3, valuation(n, 2))) - 1.
From Robert Israel, Jun 15 2020: (Start)
Number of solutions mod n, other than t[1]=t[4]=1,t[2]=t[3]=0, of the equations t[2]*(t[1] + t[4])=0, t[3]*(t[1] + t[4])=0, t[1]^2 + t[2]*t[3] = 1, t[2]*t[3] + t[4]^2 = 1, t[1]*t[4] - t[2]*t[3] = 1.
If m and n are coprime, a(m*n) = a(m)*a(n)+a(m)+a(n) (i.e. a(n)+1 is multiplicative).
If n > 1 is in A061345, a(n)=1. (End)
A384233 Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd noncomposite divisor is its k-th divisor, n >= 1, k >= 1.
1, 2, 3, 4, 5, 6, 8, 7, 10, 20, 16, 9, 12, 28, 42, 32, 11, 14, 30, 60, 84, 64, 13, 15, 40, 66, 132, 156, 128, 17, 18, 44, 78, 168, 204, 312, 256, 19, 21, 52, 88, 198, 228, 408, 684, 512, 23, 22, 56, 102, 210, 264, 456, 696, 1020, 1024, 25, 24, 68, 104, 220, 276, 468, 744, 1140, 1380
Offset: 1
Comments
This is a permutation of the positive integers.
Examples
The corner 15 X 15 of the square array is as follows: 1, 3, 6, 20, 42, 84, 156, 312, 684, 1020, 1380, 1860, 3480, 3720, 4920, ... 2, 5, 10, 28, 60, 132, 204, 408, 696, 1140, 1740, 2220, 3660, 4440, 5160, ... 4, 7, 12, 30, 66, 168, 228, 456, 744, 1332, 2040, 2460, 4020, 5580, 5640, ... 8, 9, 14, 40, 78, 198, 264, 468, 780, 1368, 2088, 2580, 4140, 6960, 6360, ... 16, 11, 15, 44, 88, 210, 276, 510, 816, 1392, 2232, 2664, 4260, 7224, 6660, ... 32, 13, 18, 52, 102, 220, 330, 552, 828, 1476, 2280, 2760, 4380, 7632, 7080, ... 64, 17, 21, 56, 104, 234, 342, 570, 888, 1488, 2436, 2820, 4740, 7896, 7380, ... 128, 19, 22, 68, 110, 252, 348, 612, 912, 1548, 2544, 2952, 4872, 8280, 7440, ... 256, 23, 24, 70, 114, 260, 372, 624, 930, 1560, 2604, 3096, 4980, 8496, 7740, ... 512, 25, 26, 76, 120, 272, 390, 660, 936, 1656, 2736, 3180, 5208, 8784, 8880, ... 1024, 27, 33, 80, 126, 304, 396, 690, 984, 1692, 2790, 3384, 5220, 8904, 9912, ... 2048, 29, 34, 90, 130, 306, 414, 792, 1032, 1710, 2832, 3420, 5256, 9030, 10248, ... 4096, 31, 35, 92, 136, 336, 420, 870, 1044, 1776, 2928, 3540, 5328, 9324, 10440, ... 8192, 37, 36, 99, 138, 340, 440, 920, 1104, 1908, 3060, 3612, 5340, 9648, 10512, ... 16384, 41, 38, 100, 140, 368, 444, 966, 1110, 1932, 3108, 3816, 5520, 9660, 10836, ... ... The divisors of 42 are [1, 2, 3, 6, 7, 14, 21, 42] and the largest odd noncomposite divisor is 7 and 7 is its 5th divisor, so T(1,5) = 42 because 42 the smallest number having that property.
Crossrefs
Programs
-
Mathematica
f[n_] := FirstPosition[Divisors[n], FactorInteger[n/2^IntegerExponent[n, 2]][[-1, 1]]][[1]]; seq[m_] := Module[{t = Table[0, {m}, {m}], v = Table[0, {m}], c = 0, k = 1, i, j}, While[c < m*(m + 1)/2, i = f[k]; If[i <= m, j = v[[i]] + 1; If[j <= m - i + 1, t[[i]][[j]] = k; v[[i]]++; c++]]; k++]; Table[t[[j]][[i - j + 1]], {i, 1, m}, {j, 1, i}] // Flatten]; seq[11] (* Amiram Eldar, May 23 2025 *)
Formula
Conjecture: T(n,2) = A061345(n).
A061344 Numbers of form p^m + 1, p odd prime, m >= 1.
4, 6, 8, 10, 12, 14, 18, 20, 24, 26, 28, 30, 32, 38, 42, 44, 48, 50, 54, 60, 62, 68, 72, 74, 80, 82, 84, 90, 98, 102, 104, 108, 110, 114, 122, 126, 128, 132, 138, 140, 150, 152, 158, 164, 168, 170, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240
Offset: 1
Comments
Lengths of almost-binary sequences with perfect odd-periodic autocorrelation function.
As J. Arndt points out, each element of this sequence leads to a conference matrix (cf. link to Wikipedia and A000952). - M. F. Hasler, Mar 14 2008
References
- H. D. Lueke, Binary odd-periodic complementary sequences. IEEE Trans. Inform. Theory, 43, pp. 365-367, 1997.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000
- Wikipedia, Conference matrix.
Programs
-
PARI
A061344(n)= local(m=1,p); for(c=1,n, until( isprime(m+=2) || ispower(m,[null], && p) && isprime(p),); /*print(c," ",m+1)*/); m+1 \\ - M. F. Hasler, Mar 14 2008
-
Python
from sympy import primepi, integer_nthroot def A061344(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))) return bisection(f,n+1,n+1)+1 # Chai Wah Wu, Feb 03 2025
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jun 12 2001
Edited by M. F. Hasler, Mar 14 2008
A064077 Greater of odd twin prime powers (lesser = A064076).
5, 7, 9, 11, 13, 19, 25, 27, 29, 31, 43, 49, 61, 73, 81, 83, 103, 109, 127, 139, 151, 169, 181, 193, 199, 229, 241, 243, 271, 283, 313, 349, 361, 421, 433, 463, 523, 571, 601, 619, 643, 661, 729, 811, 823, 829, 841, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153
Offset: 1
Keywords
Examples
a(16) = 83^1 and 83 - 1 = 81 = 3^4 = A064076(16); a(20) = 139^1 and 139 - 2 = 137^1 = A064077(20).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Partition[Select[Range[1, 1200, 2], PrimePowerQ], 2, 1], Differences[#] == {2} &][[;; , 2]] (* Amiram Eldar, Mar 19 2025 *)
Formula
a(n) = A064076(n) + 2. - Amiram Eldar, Mar 19 2025
Comments