cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A351650 Integers m such that digsum(m) divides digsum(m^2) where digsum = sum of digits = A007953.

Original entry on oeis.org

1, 2, 3, 9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 24, 27, 30, 31, 33, 36, 42, 45, 46, 54, 55, 63, 72, 74, 81, 90, 92, 99, 100, 101, 102, 103, 108, 110, 111, 112, 113, 117, 120, 121, 122, 123, 126, 128, 130, 132, 135, 144, 145, 153, 162, 171, 180, 189, 190, 191, 198
Offset: 1

Views

Author

Bernard Schott, Feb 16 2022

Keywords

Comments

This is a generalization of a problem proposed by French site Diophante in link.
The smallest term k such that the corresponding quotient = n is A280012(n).
The quotient is 1 iff m is in A058369 \ {0}.
If k is in A061909, then digsum(k^2) = digsum(k)^2.
If k is a term, 10*k is also a term.
There are infinitely many m such that both m and m+1 are in the sequence, for example subsequence A002283 \ {0}.
Corresponding quotients are in A351651.

Examples

			digit sum of 42 = 4+2 = 6; then 42^2 = 1764, digit sum of 1764 = 1+7+6+4 = 18; as 6 divides 18, 42 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], Divisible[Total[IntegerDigits[#^2]], Total[IntegerDigits[#]]] &] (* Amiram Eldar, Feb 16 2022 *)
  • PARI
    is(n)=sumdigits(n^2)%sumdigits(n) == 0 \\ David A. Corneth, Feb 16 2022
    
  • Python
    def sd(n): return sum(map(int, str(n)))
    def ok(n): return sd(n**2)%sd(n) == 0
    print([m for m in range(1, 200) if ok(m)]) # Michael S. Branicky, Feb 16 2022

Formula

A004159(a(n)) = A007953(a(n)) * A351651(n).

Extensions

More terms from David A. Corneth, Feb 16 2022

A061911 Square root of the sum of the digits of k^2 when this sum is a square.

Original entry on oeis.org

1, 2, 3, 3, 3, 1, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 1, 2, 3, 4, 4, 3, 2, 3, 4, 5, 3, 4, 5, 4, 4, 4, 4, 4, 3, 5, 5, 5, 4, 5, 3, 5, 4, 5, 5, 2, 3, 4, 4, 3, 4, 5, 4, 5, 4, 4, 5, 4, 4, 4, 3, 5, 5, 6, 4, 5, 5, 5, 5, 5, 5, 3, 4, 4, 4, 5, 3, 4, 3, 5, 4, 5, 4, 5, 4, 3
Offset: 1

Views

Author

Asher Auel, May 17 2001

Keywords

Examples

			6^2 = 36 and 3+6 = 9 is a square, thus 3 is in the sequence. 13^2 = 169 and 1+6+9 = 16 is a square, thus 4 is in the sequence.
		

Crossrefs

Programs

  • Maple
    readlib(issqr): f := []: for n from 1 to 200 do if issqr(convert(convert(n^2,base,10),`+`)) then f := [op(f),sqrt(convert(convert(n^2,base,10),`+`))] fi; od; f;
  • Mathematica
    Select[Table[Sqrt[Total[IntegerDigits[n^2]]],{n,350}],IntegerQ] (* Jayanta Basu, May 06 2013 *)

Formula

a(n) = sqrt(A004159(A061910(n))) = sqrt(A007953((A061910(n))^2)). - Zak Seidov, Jul 04 2012

A069263 (Sum of digits of n)^3 = sum of digits of n^3.

Original entry on oeis.org

1, 2, 10, 11, 20, 100, 101, 110, 111, 200, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 2000, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11011, 11100, 20000, 100000
Offset: 1

Views

Author

Joseph L. Pe, Apr 19 2002

Keywords

Examples

			Let s(n) = sum of digits of n. Then s(101)^3 = 8 and s(101^3) = s(1030301) = 8, so 101 belongs to the sequence.
		

Crossrefs

Cf. A061909.

Programs

  • Mathematica
    f[n_] := Apply[Plus, IntegerDigits[n]]; Select[Range[10^5], f[ #^3] == f[ # ]^3 &]
  • PARI
    is(n)=sumdigits(n^3)==sumdigits(n)^3 \\ Charles R Greathouse IV, Dec 19 2016

A169952 Second entry in row n of triangle in A169950.

Original entry on oeis.org

1, 2, 5, 8, 13, 20, 33, 48, 75, 100, 145, 204, 293, 396, 559, 746, 1027, 1340, 1809, 2342, 3177, 4050, 5369, 6920, 9013, 11360, 14837, 18718, 24081, 29952, 38219, 47662, 60549, 74618, 93847, 115960, 145319, 177548, 221675, 270334, 335123, 406290, 500915
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?

Crossrefs

Related to thickness: A169940-A169954, A061909.

Programs

Formula

a(n) = A169947(n) - A169947(n-1) for n>1. - Andrew Howroyd, Jul 09 2017

Extensions

a(16)-a(29) from Nathaniel Johnston, Nov 15 2010
Terms a(30) and beyond from Andrew Howroyd, Jul 09 2017

A225301 Number of solutions to rev(x^2) = rev(x)^2 with at most n digits, where the function rev(x) reverses the digits of x.

Original entry on oeis.org

4, 10, 25, 64, 154, 363, 820, 1811, 3873, 8161, 16682, 33757, 66865, 130938, 251983, 480794, 903982, 1685564, 3106009, 5677864, 10276936, 18464659, 32891188, 58169965, 102136773, 178096365, 308593320, 531191385, 909227947, 1546356486, 2617639293
Offset: 1

Views

Author

David Radcliffe, May 05 2013

Keywords

Comments

Numbers (other than 0) that end in zero are excluded.

Examples

			For n = 2 the a(2) = 10 solutions are 0, 1, 2, 3, 11, 12, 13, 21, 22, 31.
		

Crossrefs

Formula

Equals one more than the partial sums of A098701.

A169948 Fourth entry in row n of triangle in A169945.

Original entry on oeis.org

1, 2, 6, 14, 29, 52, 96, 160, 277, 450, 712, 1086, 1657, 2448, 3636, 5280, 7635, 10840, 15392, 21372, 29655, 40580, 55282, 74620, 100651, 134232, 178922, 236488, 312019, 408550, 534288, 692978, 897931, 1156256, 1485650, 1897704, 2421635, 3071608, 3894042
Offset: 2

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?

Crossrefs

Related to thickness: A169940-A169954, A061909.

Programs

  • Mathematica
    b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] + sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]];
    A196723[n_] := A196723[n] = b[n - 1, {n}] + If[n == 0, 0, A196723[n - 1]];
    c[n_, s_] := c[n, s] = Module[{sn, m}, If[n < 1, 1, sn = Append[s, n]; m = Length[sn]; If[m*(m - 1)/2 == Length[Table[sn[[i]] - sn[[j]], {i, 1, m - 1}, {j, i + 1, m}] // Flatten // Union], c[n - 1, sn], 0] + c[n-1, s]]];
    A143823[n_] := A143823[n] = c[n - 1, {n}] + If[n == 0, 0, A143823[n - 1]];
    a[n_] := a[n] = A196723[n + 1] - A143823[n + 1];
    Table[Print[n, " ", a[n]]; a[n], {n, 2, 40}] (* Jean-François Alcover, Aug 27 2019, after Alois P. Heinz in A196723 and A143823 *)

Formula

a(n) = A196723(n+1) - A143823(n+1). - Andrew Howroyd, Jul 09 2017

Extensions

a(15)-a(28) from Nathaniel Johnston, Nov 12 2010
a(29)-a(40) from Andrew Howroyd, Jul 09 2017

A169953 Third entry in row n of triangle in A169950.

Original entry on oeis.org

1, 1, 4, 8, 15, 23, 44, 64, 117, 173, 262, 374, 571, 791, 1188, 1644, 2355, 3205, 4552, 5980, 8283, 10925, 14702, 19338, 26031, 33581, 44690, 57566, 75531, 96531, 125738, 158690, 204953, 258325, 329394, 412054, 523931, 649973, 822434, 1018332, 1274909
Offset: 2

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?

Crossrefs

Related to thickness: A169940-A169954, A061909.

Programs

  • Mathematica
    b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] + sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]];
    A196723[n_] := A196723[n] = b[n - 1, {n}] + If[n == 0, 0, A196723[n - 1]]; c[n_, s_] := c[n, s] = Module[{sn, m}, If[n < 1, 1, sn = Append[s, n]; m = Length[sn]; If[m*(m - 1)/2 == Length[Table[sn[[i]] - sn[[j]], {i, 1, m - 1}, {j, i + 1, m}] // Flatten // Union], c[n-1, sn], 0] + c[n-1, s]]];
    A143823[n_] := A143823[n] = c[n - 1, {n}] + If[n == 0, 0, A143823[n - 1]];
    a[n_] := A196723[n+1] - A196723[n] - A143823[n+1] + A143823[n];
    Table[Print[n, " ", a[n]]; a[n], {n, 2, 42}] (* Jean-François Alcover, Sep 07 2019, after Alois P. Heinz in A196723 and A143823 *)

Formula

a(n) = A169948(n)-A169948(n-1) for n>2. - Andrew Howroyd, Jul 09 2017

Extensions

a(15)-a(28) and definition corrected by Nathaniel Johnston, Nov 15 2010
Offset corrected and a(30)-a(42) from Andrew Howroyd, Jul 09 2017

A351651 a(n) is the quotient obtained when digsum(m^2) is divided by digsum(m), with digsum = sum of digits = A007953 and m = A351650(n).

Original entry on oeis.org

1, 2, 3, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 1, 1, 2, 1, 3, 2, 2, 2, 1, 2, 1, 1, 2, 3, 4, 2, 2, 3, 4, 5, 3, 3, 4, 5, 3, 3, 2, 4, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 3, 4, 3, 3, 2, 3, 4, 5, 3, 2, 4, 5, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 1, 3, 4, 3, 4, 5
Offset: 1

Views

Author

Bernard Schott, Feb 16 2022

Keywords

Comments

All positive integers are terms of this sequence (see A280012).
a(n) = 1 iff m = A351650(n) is a term of A058369 \ {0}.
a(n) = digsum(n) if m = A351650(n) is a term of A061909 \ {0}.

Examples

			A351650(8) = 13, then digsum(13) = 1+3 = 4 while digsum(13^2) = digsum(169) = 1+6+9 = 16; hence, a(8) = 16/4 = 4.
		

Crossrefs

Programs

  • Mathematica
    Select[Total[IntegerDigits[#^2]]/Total[IntegerDigits[#]]& /@ Range[300], IntegerQ] (* Amiram Eldar, Feb 16 2022 *)
  • PARI
    lista(nn) = {my(list = List(), q); for (n=1, nn, if (denominator(q=sumdigits(n^2)/sumdigits(n))==1, listput(list, q));); Vec(list);} \\ Michel Marcus, Feb 16 2022

Formula

a(n) = A004159(A351650(n)) / A007953(A351650(n)).

Extensions

More terms from Michel Marcus, Feb 16 2022

A098690 Number of solutions to rev(x^2)=rev(x)^2 below 10^n.

Original entry on oeis.org

3, 9, 24, 63, 153, 362, 819, 1810, 3872, 8160, 16681, 33756, 66864, 130937, 251982, 480793, 903981, 1685563, 3106008, 5677863, 10276935, 18464658, 32891187, 58169964, 102136772, 178096364, 308593319, 531191384, 909227946, 1546356485, 2617639292
Offset: 1

Views

Author

Martin Renner, Oct 27 2004

Keywords

Comments

Partial sums of A098701. - Michel Marcus, Apr 11 2014
Excludes multiples of 10. - David Radcliffe, Aug 28 2021
Also the number of skinny numbers (A061909) with n digits, excluding 0. - David Radcliffe, Aug 28 2021

Examples

			For n = 2 the a(2) = 9 solutions are 1, 2, 3, 11, 12, 13, 21, 22, 31. - _David Radcliffe_, Aug 28 2021
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Differences[Table[Length[Select[Range[10^n],f[#^2]==f[#]^2&]],{n,0,6}]] (* Geoffrey Critzer, Dec 18 2013 *)
  • Python
    def rev(n): return int(str(n)[::-1])
    def a(n): return sum(k % 10 and rev(k**2) == rev(k)**2 for k in range(10**n)) # David Radcliffe, Aug 28 2021

Extensions

a(7),a(8) from Geoffrey Critzer, Dec 18 2013
Extended using A098701 by Michel Marcus, Apr 11 2014

A159547 Smallest number b such that the number whose digits are n in base b is a skinny number.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 50, 65, 82, 2, 3, 5, 10, 17, 26, 37, 50, 65, 82, 5, 5, 9, 13, 17, 26, 37, 50, 65, 82, 10, 10, 13, 19, 25, 31, 37, 50, 65, 82, 17, 17, 17, 25, 33, 41, 49, 57, 65, 82, 26, 26, 26, 31, 41, 51, 61, 71, 81, 91, 37, 37, 37, 37, 49, 61, 73, 85, 97, 109
Offset: 1

Views

Author

J. Lowell, Apr 14 2009

Keywords

Comments

I assume that "the number whose digits are n in base b" means the number Sum c_i b^i, where the decimal expansion of n is Sum c_i 10^i. - N. J. A. Sloane, Jun 19 2021

Examples

			a(10) = 2 because 10^2 = 100 in all bases >= 2.
a(14) = 17 because 14_16 = 20_10, so the square is 400_10 = (1,9,0)_16, but digitsum((1,9,0)_16) = 10 != digitsum((1,4)_16)^2; while in base 17, 14_17 = 21_10, so the square is 441_10 = (1,8,16)_17 and digitsum((1,8,16)_17) = 25 = digitsum((1,4)_17)^2.
		

Crossrefs

Cf. A061909.

Programs

  • PARI
    a(n) = my(d=digits(n), s); s=vecsum(d); for(b=1+vecmax(d), oo, if(s^2==sumdigits(fromdigits(d, b)^2, b), return(b))); \\ Jinyuan Wang, Jun 19 2021

Formula

a(n) <= 10 iff n is in A061909.

Extensions

More terms from Jinyuan Wang, Jun 19 2021
Previous Showing 21-30 of 36 results. Next