cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A173327 Numbers k such that tau(phi(k))= sopf(k).

Original entry on oeis.org

4, 45, 48, 75, 160, 180, 252, 294, 300, 315, 336, 351, 378, 396, 475, 507, 560, 605, 616, 650, 833, 936, 1216, 1375, 1452, 1690, 1805, 1920, 2023, 2112, 2200, 2349, 2496, 2736, 3211, 3520, 3648, 4095, 4160, 4256, 4332, 4389, 4464, 4477, 4508, 4620, 4693
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

tau(k) is the number of divisors of k (A000005); phi(k) is the Euler totient function (A000010); and sopf(k) is the sum of the distinct primes dividing k without repetition (A008472).

Examples

			4 is in the sequence because phi(4) = 2, tau(2)=2 and sopf(4)=2 ;
45 is in the sequence because phi(45) = 24, tau(24)=8 and sopf(45)=8.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    [ m:m in [2..5100]|#Divisors(EulerPhi(m)) eq &+PrimeDivisors(m)]; // Marius A. Burtea, Jul 10 2019
  • Maple
    for n from 1 to 150000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if tau(phi(n)) = t2 then print (n): else fi : od :
  • Mathematica
    tpsQ[n_]:=DivisorSigma[0,EulerPhi[n]]==Total[Transpose[FactorInteger[n]][[1]]]; Select[Range[5000],tpsQ] (* Harvey P. Dale, Apr 10 2013 *)
  • PARI
    sopf(n)=my(f=factor(n)[1,]);sum(i=1,#f,f[i])
    is(n)=numdiv(eulerphi(n))==sopf(n) \\ Charles R Greathouse IV, May 20 2013
    

Formula

Numbers n such that A062821(n)= A008472(n)

Extensions

Added punctuation to the examples. Corrected and edited by Michel Lagneau, Apr 25 2010
Edited by D. S. McNeil, Nov 20 2010

A181183 a(n) = sigma(tau(n)) (mod 2).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jani Melik, Jan 26 2011

Keywords

Crossrefs

Programs

  • Maple
    A181183:= n-> (numtheory[sigma](numtheory[tau](n)) mod 2):
    seq (A181183(n), n=1..105);
  • Mathematica
    Array[Mod[DivisorSigma[1, DivisorSigma[0, #]], 2] &, 105] (* Michael De Vlieger, Nov 18 2017 *)
  • PARI
    A181183(n) = (sigma(numdiv(n))%2); \\ Antti Karttunen, Nov 18 2017

Formula

a(n) = A000035(A062069(n)). - Antti Karttunen, Nov 18 2017

A193350 Sum of even divisors of tau(n).

Original entry on oeis.org

0, 2, 2, 0, 2, 6, 2, 6, 0, 6, 2, 8, 2, 6, 6, 0, 2, 8, 2, 8, 6, 6, 2, 14, 0, 6, 6, 8, 2, 14, 2, 8, 6, 6, 6, 0, 2, 6, 6, 14, 2, 14, 2, 8, 8, 6, 2, 12, 0, 8, 6, 8, 2, 14, 6, 14, 6, 6, 2, 24, 2, 6, 8, 0, 6, 14, 2, 8, 6, 14, 2, 24, 2, 6, 8, 8, 6, 14, 2, 12, 0, 6, 2, 24, 6, 6, 6, 14, 2, 24, 6, 8, 6, 6, 6, 24, 2, 8, 8, 0
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(24) = 14 because tau(24) = 8 and the sum of the 3 even divisors {2, 4, 8} is 14.
		

Crossrefs

Cf. A000290 (the positions of zeros).

Programs

  • Mathematica
    Table[Total[Select[Divisors[DivisorSigma[0,n]], EvenQ[ # ]&]], {n, 74}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,(1-d%2)*d);

Formula

a(n) = A146076(A000005(n)). - Antti Karttunen, May 28 2017
a(n) = A062069(n) - A193349(n). - Amiram Eldar, Jan 27 2025

Extensions

Data section extended to 100 terms by Antti Karttunen, May 28 2017

A336612 Numbers m such that sigma(tau(m)) divides m, where tau(m) is the number of divisors function (A000005) and sigma(m) is the sum of divisors function (A000203).

Original entry on oeis.org

1, 3, 4, 12, 14, 21, 30, 35, 64, 77, 84, 91, 105, 119, 133, 135, 140, 144, 161, 162, 165, 192, 195, 203, 217, 224, 255, 259, 285, 287, 301, 308, 329, 336, 343, 345, 360, 364, 371, 375, 392, 413, 420, 427, 435, 465, 468, 469, 476, 480, 497, 511, 532, 540, 553, 555, 576
Offset: 1

Views

Author

Bernard Schott, Jul 27 2020

Keywords

Comments

Every 7*p with p prime <> 7 is a term because 7*p / sigma(tau(7*p)) = p (see example).

Examples

			35 = 7 * 5, tau(35) = 4, sigma(tau(35)) = sigma(4) = 4 + 2 + 1 = 7 and 35/7 = 5 hence 35 is a term.
		

Crossrefs

Cf. A336613 (tau(sigma(m)) divides m).

Programs

  • Maple
    with(numtheory) filter:= m -> m/sigma(tau(m)) = floor(m/sigma(tau(m))) : select(filter, [$1..600]);
  • Mathematica
    Select[Range[600], Divisible[#, DivisorSigma[1, DivisorSigma[0, #]]] &] (* Amiram Eldar, Jul 27 2020 *)
  • PARI
    isok(m) = !(m % sigma(numdiv(m))); \\ Michel Marcus, Jul 29 2020

A162880 Numbers k such that tau(sigma(k)) is not equal to sigma(tau(k)).

Original entry on oeis.org

2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80
Offset: 1

Views

Author

Jaroslav Krizek, Jul 16 2009

Keywords

Comments

The complement of A076361, that is, the indices k where A076360(k) is not zero.

Examples

			a(6)= 8 is in the list because tau(sigma(8))=A062068(8)=4 whereas sigma(tau(8)) = A062069(8) = 7.
		

Crossrefs

Programs

Extensions

Edited by R. J. Mathar, Jul 21 2009

A163105 a(n) = tau(sigma(tau(n))), where tau = number of divisors of n (A000005), and sigma = sum of divisors of n (A000203).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 6, 2, 2, 2, 4, 2, 6, 2, 6, 2, 2, 2, 4, 3, 2, 2, 6, 2, 4, 2, 6, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 6, 6, 2, 2, 6, 3, 6, 2, 6, 2, 4, 2, 4, 2, 2, 2, 6, 2, 2, 6, 4, 2, 4, 2, 6, 2, 4, 2, 6, 2, 2, 6, 6, 2, 4, 2, 6, 4, 2, 2, 6, 2, 2, 2, 4, 2, 6, 2, 6, 2, 2, 2, 6, 2, 6, 6, 2, 2, 4, 2, 4, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 20 2009

Keywords

Comments

Repeated application of tau (number of divisors) and sigma (sum of divisors).

Crossrefs

Programs

  • Maple
    with(numtheory) : A163105 := proc(n) tau(sigma(tau(n))) ; end: seq(A163105(n),n=1..120) ; # R. J. Mathar, Jul 27 2009
  • Mathematica
    With[{s = DivisorSigma}, s[0, s[1, s[0, Range[100]]]]] (* Paolo Xausa, Oct 07 2024 *)
  • PARI
    A163105(n) = numdiv(sigma(numdiv(n))); \\ Antti Karttunen, Jul 23 2017

Formula

Extensions

More terms from R. J. Mathar, Jul 27 2009
Name edited by Antti Karttunen, Jul 23 2017

A163108 a(n) = sigma(tau(sigma(n))).

Original entry on oeis.org

1, 3, 4, 3, 7, 12, 7, 7, 3, 12, 12, 12, 7, 15, 15, 3, 12, 7, 12, 15, 12, 13, 15, 28, 3, 15, 15, 15, 15, 28, 12, 12, 18, 15, 18, 7, 7, 28, 15, 28, 15, 28, 12, 28, 15, 28, 18, 12, 7, 7, 28, 12, 15, 31, 28, 31, 18, 28, 28, 31, 7, 28, 15, 3, 28, 24, 12, 28, 28, 24, 28, 15, 7, 15, 12, 28, 28
Offset: 1

Views

Author

Jaroslav Krizek, Jul 20 2009

Keywords

Comments

Repeated application of tau (number of divisors) and sigma (sum of divisors).

Crossrefs

Programs

Formula

Extensions

More terms from R. J. Mathar, Jul 27 2009

A163368 a(n) = phi(sigma(tau(n))).

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 6, 2, 6, 2, 4, 2, 6, 6, 2, 2, 4, 2, 4, 6, 6, 2, 8, 2, 6, 6, 4, 2, 8, 2, 4, 6, 6, 6, 12, 2, 6, 6, 8, 2, 8, 2, 4, 4, 6, 2, 6, 2, 4, 6, 4, 2, 8, 6, 8, 6, 6, 2, 12, 2, 6, 4, 4, 6, 8, 2, 4, 6, 8, 2, 12, 2, 6, 4, 4, 6, 8, 2, 6, 2, 6, 2, 12, 6
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Magma
    [EulerPhi(SumOfDivisors(NumberOfDivisors(n))): n in [1..80]]; // Vincenzo Librandi, Dec 21 2016
  • Maple
    with(numtheory): A163368:=n->phi(sigma(tau(n))): seq(A163368(n), n=1..150); # Wesley Ivan Hurt, Dec 19 2016
  • Mathematica
    Table[EulerPhi[DivisorSigma[1, DivisorSigma[0, n]]], {n, 100}] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    vector(50, n, eulerphi(sigma(numdiv(n)))) \\ G. C. Greubel, Dec 19 2016
    

Formula

a(1) = 1, a(p) = 2 for p = primes (A000040), a(pq) = 6 for pq = product of two distinct primes (A006881), a(pq...z) = A000010(2^(k+1)-1) = A053287(k+1) for pq...z = product of k (k > 2) distinct primes p,q,...,z (A120944).

A173325 Numbers k such that sigma(tau(k)) equals the sum of distinct primes dividing k.

Original entry on oeis.org

3, 10, 104, 105, 175, 245, 276, 343, 414, 484, 532, 798, 1190, 1430, 1776, 1862, 3105, 3174, 3712, 4394, 5049, 5054, 5104, 5994, 6256, 6360, 6975, 8125, 8480, 8625, 9472, 9648, 10600, 12408, 12789, 14310, 16544, 16625, 16728, 19908, 20295, 21056, 21708
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

sigma(tau(k)) = A000203(A000005(k)) = A062069(k).
From Robert Israel, Nov 07 2016: (Start)
If m is in A023194, sigma(m)^(m-1) is in the sequence.
If p and q are distinct primes, and r and s are distinct primes such that r+s = (p+1)(q+1), then r^(p-1)*s^(q-1) is in the sequence.
(End)

Examples

			k=3 with sigma(tau(3)) = sigma(2) = 3 = A008472(3).
k=10 with sigma(tau(10)) = sigma(4) = 7 = A008472(10).
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 100000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if sigma(tau(n)) = t2 then print (n): else fi : od :

Formula

{k: A062069(k) = A008472(k)}.

Extensions

"sopf" uses replaced and examples disentangled by R. J. Mathar, Feb 24 2010

A173582 Numbers k such that sigma(tau(k)) = rad(k).

Original entry on oeis.org

1, 3, 135, 336, 343, 375, 1134, 14406, 24336, 41067, 54756, 85293, 321408, 428544, 430080, 1028196, 1084752, 1651104, 1886976, 2476656, 2935296, 3066336, 3341637, 3577392, 4599504, 4881384, 5133375, 5366088, 5451264, 8347248, 8989344, 9240075, 9552816, 9871875
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

rad(k) is the product of the primes dividing k (A007947), tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisor of k (A000203).

Examples

			tau(3) = 2, sigma(2) = 3 and rad(3) = 3. tau(135) = 8, sigma(8) = 15 and rad(135) = 15. tau(14406) = 20, sigma(20) = 42 and rad(14406) = 42.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if sigma(tau(n)) = t2 then print (n): else fi : od :
  • Mathematica
    Select[Range[500000], DivisorSigma[1, DivisorSigma[0, #]] == Times @@ (First@# & /@ FactorInteger[#]) &] (* Amiram Eldar, Jul 11 2019 *)

Formula

k such that A062069(k) = A007947(k).

Extensions

a(20)-a(34) from Donovan Johnson, Jan 14 2012
Previous Showing 11-20 of 26 results. Next