A062140 Coefficient triangle of generalized Laguerre polynomials n!*L(n,4,x) (rising powers of x).
1, 5, -1, 30, -12, 1, 210, -126, 21, -1, 1680, -1344, 336, -32, 1, 15120, -15120, 5040, -720, 45, -1, 151200, -181440, 75600, -14400, 1350, -60, 1, 1663200, -2328480, 1164240, -277200, 34650, -2310, 77, -1, 19958400, -31933440
Offset: 0
Examples
Triangle begins: {1}; {5,-1}; {30,-12,1}; {210,-126,21,-1}; ... 2!*L(2,4,x)=30-12*x+x^2.
Links
Crossrefs
Programs
-
Mathematica
Flatten[Table[((-1)^m)*n!*Binomial[n+4,n-m]/m!,{n,0,11},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
-
PARI
row(n) = Vecrev(n!*pollaguerre(n, 4)); \\ Michel Marcus, Feb 06 2021
-
Python
import math f=math.factorial def C(n,r): return f(n)//f(r)//f(n-r) i=0 for n in range(26): for m in range(n+1): print(i, (-1)**m*f(n)*C(n+4,n-m)//f(m)) i+=1 # Indranil Ghosh, Feb 23 2017
Formula
T(n, m) = ((-1)^m)*n!*binomial(n+4, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^5), m >= 0.
Comments