cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A062140 Coefficient triangle of generalized Laguerre polynomials n!*L(n,4,x) (rising powers of x).

Original entry on oeis.org

1, 5, -1, 30, -12, 1, 210, -126, 21, -1, 1680, -1344, 336, -32, 1, 15120, -15120, 5040, -720, 45, -1, 151200, -181440, 75600, -14400, 1350, -60, 1, 1663200, -2328480, 1164240, -277200, 34650, -2310, 77, -1, 19958400, -31933440
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The row polynomials s(n,x) := n!*L(n,4,x)= sum(a(n,m)*x^m,m=0..n) have g.f. exp(-z*x/(1-z))/(1-z)^5. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials p(n,x)=sum(|A008297(n,m)|*(-x)^m, m=1..n) and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).

Examples

			Triangle begins:
  {1};
  {5,-1};
  {30,-12,1};
  {210,-126,21,-1};
  ...
2!*L(2,4,x)=30-12*x+x^2.
		

Crossrefs

For m=0..5 the (unsigned) columns give A001720(n+4), A062199, A062260-A062263. The row sums (signed) give A062265, the row sums (unsigned) give A062266.

Programs

  • Mathematica
    Flatten[Table[((-1)^m)*n!*Binomial[n+4,n-m]/m!,{n,0,11},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 4)); \\ Michel Marcus, Feb 06 2021
  • Python
    import math
    f=math.factorial
    def C(n,r):
        return f(n)//f(r)//f(n-r)
    i=0
    for n in range(26):
        for m in range(n+1):
            print(i, (-1)**m*f(n)*C(n+4,n-m)//f(m))
            i+=1 # Indranil Ghosh, Feb 23 2017
    

Formula

T(n, m) = ((-1)^m)*n!*binomial(n+4, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^5), m >= 0.

A062138 Coefficient triangle of generalized Laguerre polynomials n!*L(n,5,x)(rising powers of x).

Original entry on oeis.org

1, 6, -1, 42, -14, 1, 336, -168, 24, -1, 3024, -2016, 432, -36, 1, 30240, -25200, 7200, -900, 50, -1, 332640, -332640, 118800, -19800, 1650, -66, 1, 3991680, -4656960, 1995840, -415800, 46200, -2772, 84, -1, 51891840, -69189120
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The row polynomials s(n,x) := n!*L(n,5,x)= sum(a(n,m)*x^m,m=0..n) have e.g.f. exp(-z*x/(1-z))/(1-z)^6. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials sum(|A008297(n,m)|*(-x)^m, m=1..n), n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).
These polynomials appear in the radial part of the l=2 (d-wave) eigen functions for the discrete energy levels of the H-atom. See Messiah reference.
For m=0..5 the (unsigned) column sequences (without leading zeros) are: A001725(n+5), A062148-A062152. Row sums (signed) give A062191; row sums (unsigned) give A062192.
The unsigned version of this triangle is the triangle of unsigned 3-Lah numbers A143498. - Peter Bala, Aug 25 2008

Examples

			Triangle begins:
  {1};
  {6, -1};
  {42, -14, 1};
  {336, -168, 24, -1};
  ...
2!*L(2, 5, x) = 42-14*x+x^2.
		

References

  • A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.

Crossrefs

For m=0..5 the (unsigned) column sequences (without leading zeros) are: A001725(n+5), A062148, A062149, A062150, A062151, A062152.
Row sums (signed) give A062191, row sums (unsigned) give A062192.
Cf. A143498.

Programs

  • Mathematica
    Flatten[Table[((-1)^m)*n!*Binomial[n+5,n-m]/m!,{n,0,8},{m,0,n}]] (* Indranil Ghosh, Feb 24 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (m=0, n, print1(((-1)^m)*n!*binomial(n+5, n-m)/m!, ", "); ); print(); ); } \\ Indranil Ghosh, Feb 24 2017
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 5)); \\ Michel Marcus, Feb 06 2021
    
  • Python
    import math
    f=math.factorial
    def C(n, r):return f(n)//f(r)//f(n-r)
    i=-1
    for n in range(26):
        for m in range(n+1):
            i += 1
            print(str(i)+" "+str(((-1)**m)*f(n)*C(n+5, n-m)//f(m))) # Indranil Ghosh, Feb 24 2017

Formula

T(n, m) = ((-1)^m)*n!*binomial(n+5, n-m)/m!.
E.g.f. for m-th column: ((-x/(1-x))^m)/(m!*(1-x)^6), m >= 0.

A143497 Triangle of unsigned 2-Lah numbers.

Original entry on oeis.org

1, 4, 1, 20, 10, 1, 120, 90, 18, 1, 840, 840, 252, 28, 1, 6720, 8400, 3360, 560, 40, 1, 60480, 90720, 45360, 10080, 1080, 54, 1, 604800, 1058400, 635040, 176400, 25200, 1890, 70, 1, 6652800, 13305600, 9313920, 3104640, 554400, 55440, 3080, 88, 1
Offset: 2

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

For a signed version of this triangle see A062137. The unsigned 2-Lah number L(2; n,k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1 and 2 must belong to different lists. More generally, the unsigned r-Lah number L(r; n, k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1, 2, ..., r belong to different lists. If r = 1 there is no restriction and we obtain the unsigned Lah numbers A105278. For other cases see A143498 (r=3) and A143499 (r=4). We make some remarks on the general case.
The unsigned r-Lah numbers occur as connection constants in the generalized Lah identity (x + 2*r - 1)*(x + 2*r)*...*(x + 2*r + n - r - 2) = Sum_{k=r..n} L(r; n, k)*(x - 1)*(x - 2)*...*(x - k + r) for n >= r and where any empty products are taken equal to 1 (for a bijective proof of the identity, follow the proof of [Petkovsek and Pisanski] but restrict the first r of the Argonauts to different paths).
The unsigned r-Lah numbers satisfy the same recurrence as the unsigned Lah numbers, namely, L(r; n, k) = (n + k - 1)*L(r; n - 1,k) + L(r; n - 1,k - 1), but with the boundary conditions: L(r; n, k) = 0 if n < r or if k < r; L(r; r, r) = 1. The recurrence has the explicit solution L(r; n, k) = ((n - r)!/(k - r)!)*binomial(n + r - 1, k + r - 1) for n, k >= r. It follows that the unsigned r-Lah numbers have 'vertical' generating functions for k >= r of the form Sum_{n>=k} L(r; n, k)*t^n/(n -r)! = 1/(k - r)!*t^k/(1 - t)^(k + r). This yields the e.g.f. for the array of unsigned r-restricted Lah numbers in the form: Sum_{n,k>=r} L(r; n, k)*x^k*t^n/(n-r)! = (x*t)^r * 1/(1 - t)^(2*r) * exp(x*t/(1 - t)) = (x*t)^r (1 + (2*r + x)*t + (2r*(2*r + 1) + 2*(2*r + 1)*x + x^2)*t^2/2! + ...).
The array of unsigned r-Lah numbers begins
1
2r 1
2r*(2r+1) 2*(2r+1) 1
2r*(2r+1)*(2r+2) 3*(2r+1)*(2r+2) 3*(2r+2) 1
...
and equals exp(D(r)), where D(r) is the array with the sequence (2*r, 2*(2*r + 1), 3*(2*r + 2), 4*(2*r + 3), ...) on the main subdiagonal and zeros everywhere else.
The unsigned r-Lah numbers are related to the r-Stirling numbers: the lower triangular array of unsigned r-Lah numbers may be expressed as the matrix product St1(r) * St2(r), where St1(r) and St2(r) denote the arrays of r-Stirling numbers of the first and second kind respectively. The theory of r-Stirling numbers is developed in [Broder]. See A143491 - A143496 for tables of r-Stirling numbers. An alternative factorization for the array is as St1 * P^(2r - 2) * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277 (apply Theorem 10 of [Neuwirth]).
The array of unsigned r-Lah numbers is an example of the fundamental matrices sketched in A133314. So redefining the offset as n=0, given matrices A and B with A(n, k) = T(n, k)*a(n - k) and B(n, k) = T(n, k)*b(n - k), then A*B = C where C(n, k) = T(n,k)*[a(.) + b(.)]^(n - k), umbrally. An e.g.f. for the row polynomials of A is exp(x*t) exp{-x*t*[a*t/(a*t - 1)]}/(1 - a*t)^4 = exp(x*t) exp[(.)!*Laguerre(., 3, -x*t)* a(.)*t)], umbrally. - Tom Copeland, Sep 19 2008

Examples

			Triangle begins:
=========================================
n\k |     2     3     4     5     6     7
----+------------------------------------
  2 |     1
  3 |     4     1
  4 |    20    10     1
  5 |   120    90    18     1
  6 |   840   840   252    28     1
  7 |  6720  8400  3360   560    40     1
 ...
T(4,3) = 10. The ten partitions of {1,2,3,4} into 3 ordered lists such that the elements 1 and 2 lie in different lists are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {1}{4}{2,3} and {1}{4}{3,2}, {2}{3}{1,4} and {2}{3}{4,1}, {2}{4}{1,3} and {2}{4}{3,1}. The remaining two partitions {3}{4}{1,2} and {3}{4}{2,1} are not allowed because the elements 1 and 2 belong to the same block.
		

Crossrefs

Cf. A001715 (column 2), A007318, A008275, A008277, A061206 (column 3), A062137, A062141 - A062144 ( column 4 to column 7), A062146 (alt. row sums), A062147 (row sums), A105278 (unsigned Lah numbers), A143491, A143494, A143498, A143499.

Programs

  • GAP
    T:=Flat(List([2..10],n->List([2..n],k->(Factorial(n-2)/Factorial(k-2))*Binomial(n+1,k+1)))); # Muniru A Asiru, Nov 27 2018
  • Maple
    T := (n, k) -> ((n-2)!/(k-2)!)*binomial(n+1, k+1):
    for n from 2 to 11 do seq(T(n, k), k = 2..n) od;
  • Mathematica
    T[n_, k_] := (n-2)!/(k-2)!*Binomial[n+1, k+1]; Table[T[n, k], {n,2,10}, {k,2,n}] // Flatten (* Amiram Eldar, Nov 27 2018 *)
  • Maxima
    create_list((n - 2)!/(k - 2)!*binomial(n + 1, k + 1), n, 2, 12, k, 2, n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
    

Formula

T(n, k) = ((n - 2)!/(k - 2)!)*C(n+1, k+1), for n, k >= 2.
Recurrence: T(n, k) = (n + k - 1)*T(n-1, k) + T(n-1, k-1) for n, k >= 2, with the boundary conditions: T(n, k) = 0 if n < 2 or k < 2; T(2, 2) = 1.
E.g.f. for column k: Sum_{n>=k} T(n, k)*t^n/(n - 2)! = 1/(k - 2)!*t^k/(1 - t)^(k+2) for k >= 2.
E.g.f: Sum_{n=2..inf} Sum_{k=2..n} T(n, k)*x^k*t^n/(n - 2)! = (x*t)^2/(1 - t)^4* exp(x*t/(1 - t)) = (x*t)^2*(1 + (4 + x)*t + (20 + 10*x + x^2)*t^2/2! + ... ).
Generalized Lah identity: (x + 3)*(x + 4)*...*(x + n) = Sum_{k = 2..n} T(n, k)*(x - 1)*(x - 2)*...*(x - k + 2).
The polynomials 1/n!*Sum_{k=2..n+2} T(n+2, k)*(-x)^(k - 2) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,3,x). See A062137.
Array = A143491 * A143494 = abs(A008275) * (A007318)^2 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (4, 10, 18, 28, ...) on the main subdiagonal and zeros elsewhere.
After adding 1 to the head of the main diagonal and a zero to each of the subdiagonals, the n-th diagonal may be generated as coefficients of (1/n!) [D^(-1) tDt t^(-3)D t^3]^n exp(x*t), where D is the derivative w.r.t. t and D^(-1) t^j/j! = t^(j + 1)/(j + 1)!. E.g., n = 2 generates 20*x*t^3/3! + 90*x^2*t^4/4! + 252*x^3* t^5/5! + ... . For the general unsigned r-Lah number array, replace the threes by (2*r - 1) in the operator. The e.g.f. of the row polynomials is then exp[D^(-1) tDt t^(-(2*r-1))D t^(2*r - 1)] exp(x*t), with offset n = 0. - Tom Copeland, Sep 21 2008

A235706 (I + A132440)^3: Coefficients for normalized generalized Laguerre polynomials n!*Lag(n, 3-n, -x).

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 6, 18, 9, 1, 0, 24, 36, 12, 1, 0, 0, 60, 60, 15, 1, 0, 0, 0, 120, 90, 18, 1, 0, 0, 0, 0, 210, 126, 21, 1, 0, 0, 0, 0, 0, 336, 168, 24, 1, 0, 0, 0, 0, 0, 0, 504, 216, 27, 1, 0, 0, 0, 0, 0, 0, 0, 720, 270, 30, 1
Offset: 0

Views

Author

Tom Copeland, Apr 20 2014

Keywords

Comments

The associated Laguerre polynomials n!*Lag(n,3-n,-x) are related to the rook polynomials of a rectangular 3 X n chessboard by R(3,n,x) = n!*x^n*Lag(n,3-n,-1/x), which are also the matching polynomials, or generating function of the number of k-edge matchings, of the complete bipartite graph K(m,n), or biclique (cf. Wikipedia for details).
The formulas here and below can be naturally extended with 3 replaced by any positive integer m. For m = 1 and 2, see unsigned A132013 and A132014. The formulas there can be extrapolated to apply to this matrix.

Examples

			Triangle begins:
  1;
  3,  1;
  6,  6,  1;
  6, 18,  9,  1;
  0, 24, 36, 12,  1;
  0,  0, 60, 60, 15, 1;
  ...
		

Crossrefs

Cf. A007318, A008306 for a generalization, A132013, A132014, A132440, A238363, A238385.
....................................
With 0th row: 1
n-th row: n!*Lag(n,3-n,-x)
....................................
1st: 1!*Lag(1,2,-x) = A062139(1,k,-x)
2nd: 2!*Lag(2,1,-x) = A105278(2,k,x)
3rd: 3!*Lag(3,0,-x) = A021009(3,k,-x)
4th: 4!*Lag(4,-1,-x) = A111596(4,k,-x)
5th: 5!*Lag(5,-2,-x) = cf. x^2*A062139(3,k,x)
6th: 6!*Lag(6,-3,-x) = cf. x^3*A062137(3,k,-x)
....................................
n-th row: x^(n-3)*3!*Lag(3,n-3,-x)
....................................
1st: x^(-2)*3!Lag(3,-2,-x) = cf. x^(-2)*[x^2*A062139(1,k,x)]
2nd: x^(-1)*3!Lag(3,-1,-x) = x^(-1)*A111596(3,k,-x)
3rd: x^0*3!Lag(3,0,-x) = x^0*A021009(3,k,-x)
4th: x^1*3!Lag(3,1,-x) = x^1*A105278(3,k,x)
5th: x^2*3!Lag(3,2,-x) = x^2*A062139(3,k,-x)
6th: x^3*3!Lag(3,3,-x) = x^3*A062137(3,k,-x)

Programs

  • Magma
    /* As triangle */ [[Binomial(3, n-k)*Factorial(n)/Factorial(k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 28 2017
  • Mathematica
    Table[Binomial[3, n - k] n! / k!, {n, 0, 9}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Jul 28 2017 *)
  • PARI
    T(n,k) = binomial(3,n-k)*n!/k!
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 3-n, -x)); \\ Michel Marcus, Feb 06 2021
    

Formula

T(n,k) = binomial(3,n-k)*n!/k! = binomial(n,k)*3!/(3-n+k)!.
E.g.f.: exp(y*x)(1+y)^3, so this is an Appell sequence of polynomials with lowering operator L= D= d/dx and raising operator R = x + 3/(1+D).
E.g.f. of inverse matrix is exp(x*y)/(1+y)^3.
Multiply the n-th diagonal of the Pascal matrix A007318 by d(0)=1, d(1)=3, d(2)=6, d(3)=6, and d(n)=0 for n>3 to obtain T.
Row polynomials: n!*Lag(n,3-n,-x) = x^(n-3)*3!*Lag(3,n-3,-x) =
(3!/(3-n)!)*K(-n,3-n+1,-x) where K is Kummer's confluent hypergeometric function (as a limit of n+c as c tends to zero).
T = (I + A132440)^3 = exp[3*(A238385-I)]. I = identity matrix.
Operationally, n!Lag(n,3-n,-:xD:) = x^(n-3)*:Dx:^n*x^(3-n) = x^(-3)*:xD:^n*x^3 = n!*binomial(xD+3,n) = n!*binomial(3,n)*K(-n,3-n+1,-:xD:) where :AB:^n = A^n*B^n for any two operators.
n-th row polynomial: n!*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*Lag(k,3,-x). - Peter Bala, Jul 25 2021

A343861 Coefficient triangle of generalized Laguerre polynomials n!*L(n,n,x) (rising powers of x).

Original entry on oeis.org

1, 2, -1, 12, -8, 1, 120, -90, 18, -1, 1680, -1344, 336, -32, 1, 30240, -25200, 7200, -900, 50, -1, 665280, -570240, 178200, -26400, 1980, -72, 1, 17297280, -15135120, 5045040, -840840, 76440, -3822, 98, -1, 518918400, -461260800, 161441280, -29352960, 3057600, -188160, 6720, -128, 1
Offset: 0

Views

Author

Seiichi Manyama, May 01 2021

Keywords

Examples

			The triangle begins:
       1;
       2,      -1;
      12,      -8,      1;
     120,     -90,     18,     -1;
    1680,   -1344,    336,    -32,    1;
   30240,  -25200,   7200,   -900,   50,  -1;
  665280, -570240, 178200, -26400, 1980, -72, 1;
		

Crossrefs

For k=0..1 the (unsigned) columns give A001813, A092956(n-1).
Row sums (signed) give A006902, row sums (unsigned) give A082545.

Programs

  • Magma
    [(-1)^k*Factorial(n-k)*Binomial(n,k)*Binomial(2*n, n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
    
  • Mathematica
    T[n_, k_] := (-1)^k * (2*n)! * Binomial[n, k]/(k + n)!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
  • PARI
    T(n, k) = (-1)^k*(2*n)!*binomial(n,k)/(k+n)!;
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, n));
    
  • SageMath
    def A343861(n,k): return (-1)^k*factorial(n-k)*binomial(n,k)*binomial(2*n,n+k)
    flatten([[A343861(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022

Formula

T(n, k) = (-1)^k * n! * binomial(2*n,n-k)/k! = (-1)^k * (2*n)! * binomial(n,k)/(k+n)!.
T(n, 0) = A001813(n).
T(n, 1) = -A092956(n-1).
Sum_{k=0..n} T(n, k) = A006902(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A082545(n).

A355407 Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^4.

Original entry on oeis.org

0, 1, 11, 110, 1154, 13144, 164136, 2251920, 33923760, 560180160, 10117886400, 199399132800, 4275988617600, 99473802624000, 2502049379558400, 67804022648678400, 1972357507107993600, 61358018782620672000, 2033893411878730752000, 71587670846333773824000, 2666700362750370895872000
Offset: 0

Views

Author

Mélika Tebni, Jul 01 2022

Keywords

Comments

Conjecture: For p prime, a(p) == -1 (mod p).

Crossrefs

Programs

  • Maple
    egf := log((1 - x)/(1 - 2*x))/(1 - x)^4: ser := series(egf, x, 22):
    seq(n!*coeff(ser, x, n), n = 0..20); # Peter Luschny, Jul 01 2022
  • Mathematica
    With[{nn=20},CoefficientList[Series[Log[((1-x)/(1-2x))]/(1-x)^4,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Mar 09 2023 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(k+1)*k!*A062137(n, k+1).
a(0) = 0, a(n) = n!*Sum_{k=1..n} A000292(n-k+1)*(2^k-1)/k.
a(n) = A000332(n+3)*n!*hypergeom([1 - n, 1, 1], [2, 5], -1). - Peter Luschny, Jul 01 2022
Previous Showing 11-16 of 16 results.