cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A108859 Numbers k such that k divides the sum of the digits of k^(2k).

Original entry on oeis.org

1, 3, 5, 9, 18, 63, 72, 74, 104, 111, 116, 117, 565, 621, 734, 1242, 1620, 4596, 4728, 5823, 5956, 21135, 28251, 46530, 46908, 78257, 129619, 277407, 463689, 464706, 599119
Offset: 1

Views

Author

Ryan Propper, Jul 11 2005

Keywords

Comments

The quotients are 1, 6, 8, 9, 13, 17, 16, 17, 17, 18, 17, 19, 25, 25, 26, 28, 20, 33, 33, 34, 34, 39, 40, 33, 42, 44, 46, 49.

Examples

			734 is a term because the sum of the digits of 734^(2*734), 19084, is divisible by 734.
		

Crossrefs

Cf. A062206.

Programs

  • Mathematica
    Do[If[Mod[Plus @@ IntegerDigits[n^(2*n)], n] == 0, Print[n]], {n, 1, 10000}]
  • Python
    from gmpy2 import digits, mpz
    def ok(n): return n and sum(map(mpz, digits(n**(2*n))))%n == 0
    print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, May 08 2025

Extensions

a(22)-a(28) from Lars Blomberg, Jul 12 2011
a(29)-a(31) from Michael S. Branicky, May 13 2025

A167436 3rd Fibonacci polynomial evaluated at n^n.

Original entry on oeis.org

2, 17, 730, 65537, 9765626, 2176782337, 678223072850, 281474976710657, 150094635296999122, 100000000000000000001, 81402749386839761113322, 79496847203390844133441537, 91733330193268616658399616010
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Table[Fibonacci[3,n^n],{n,20}] (*and/or*) Table[(n^2)^n+1,{n,17}]

Formula

a(n) = A002522(n^n) = 1+A062206(n). - R. J. Mathar, Jun 18 2019

A356568 a(n) = (4^n - 1)*n^(2*n).

Original entry on oeis.org

0, 3, 240, 45927, 16711680, 9990234375, 8913923665920, 11111328602485167, 18446462598732840960, 39346257980661240576303, 104857500000000000000000000, 341427795961470170556885610263, 1333735697353436921058237339402240, 6156119488473827117528057630000587767
Offset: 0

Views

Author

Enrique Navarrete, Sep 30 2022

Keywords

Comments

If S = {1,2,3,...,2n}, a(n) is the number of functions from S to S such that at least one even number is mapped to an odd number or at least one odd number is mapped to an even number.
Note the result can be obtained as (2*n)^(2*n) - n^(2*n), which is the number of functions from S to S minus the number of functions from S to S that map each even number to an even number and each odd number to an odd number. Hence in particular a(0) = 1-1 = 0.

Examples

			For n=1, the functions are f1: (1,1),(2,1); f2: (1,2),(2,2); f3: (1,2),(2,1).
		

Crossrefs

Programs

Formula

a(n) = A085534(n) - A062206(n).

A085525 a(n) = n^(2*n + 2).

Original entry on oeis.org

0, 1, 64, 6561, 1048576, 244140625, 78364164096, 33232930569601, 18014398509481984, 12157665459056928801, 10000000000000000000000, 9849732675807611094711841, 11447545997288281555215581184, 15502932802662396215269535105521, 24201432355484595421941037243826176
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

a(n) is the number of labeled deterministic finite automata with n states, 2 letters, and one start and one accept state. - Anand Jain, Mar 20 2025

Crossrefs

Cf. A070691.

Programs

A259926 a(n) = n^(2*n) - n^(2*n - 1).

Original entry on oeis.org

0, 8, 486, 49152, 7812500, 1813985280, 581334062442, 246290604621824, 133417453597332552, 90000000000000000000, 74002499442581601012110, 72872109936441607122321408, 84676920178401799992368876316, 114656931713301654695784797437952, 178967655284025147557258605957031250
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 09 2015

Keywords

Crossrefs

Programs

  • Magma
    [n^(2*n) - n^(2*n - 1): n in [1..20]]; // Vincenzo Librandi, Jul 10 2015
  • Mathematica
    Table[n^(2 n) - n^(2 n - 1), {n, 15}]
    Array[#^(2 #) - #^(2 # - 1)&, 15] (* Vincenzo Librandi, Jul 10 2015 *)
  • PARI
    vector(20, n, n^(2*n) - n^(2*n-1)) \\ Michel Marcus, Jul 09 2015
    
  • Sage
    [n**(2*n) - n**(2*n - 1) for n in range(1, 20)] # Anders Hellström, Jul 10 2015
    

Formula

a(n) = A062206(n) - A085524(n).
a(n) = n^A005843(n) - n^A005408(n-1).
a(n) = n! * [x^n] LambertW(-n*x)^2 / (1 + LambertW(-n*x)). - Ilya Gutkovskiy, Mar 24 2020

A356691 a(n) = n! * Sum_{k=0..n} k^(2*k)/k!.

Original entry on oeis.org

1, 2, 20, 789, 68692, 10109085, 2237436846, 693885130771, 287026057756824, 152677869816810537, 101526778698168105370, 82519543952519610272391, 80487081730821079456710228, 92779662255769290691336848973, 124775610962828705895908497741878
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(2*k)/k!);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+i^(2*i)); v;

Formula

a(0) = 1; a(n) = n*a(n-1) + n^(2*n).

A382359 Number of labeled deterministic finite automata with n states and two letters.

Original entry on oeis.org

2, 128, 17496, 4194304, 1562500000, 835884417024, 607687873272704, 576460752303423488, 691636079448571949568, 1024000000000000000000000, 1833841138186726138360895488, 3907429033741066770846918377472, 9769232732262334599652925506494464
Offset: 1

Views

Author

Anand Jain, Mar 22 2025

Keywords

Comments

The first term in the product represents the n-choices for the starting state. The second term represents the subset of states to designate as accepting. The third term is the number of transition functions with an alphabet of length two.

Examples

			For n = 1, we have two choices (a(1)=2), either the node is an accept state or not. We have no choice but to send both letters of the alphabet to itself, and only one choice for the start state. Therefore 1*2*1 = 2.
For n = 2, we have 2 choices for starting, 4 choices for which states are accepting, and 2^4 choices for transition functions. So a(2) = 2*4*16 = 128.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= n * 2^n * n^(2*n); Array[a,13] (* Stefano Spezia, Sep 03 2025 *)

Formula

a(n) = n * 2^n * n^(2*n).
a(n) = n * A155957(n).
a(n) = A036289(n) * A062206(n).
Previous Showing 21-27 of 27 results.