cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A346477 Dirichlet inverse of A346476.

Original entry on oeis.org

1, -1, -1, 2, -3, 5, -3, 2, 8, 13, -9, -2, -9, 17, 11, 8, -15, -8, -15, -12, 19, 37, -17, 18, 8, 41, -4, -12, -27, -33, -25, 20, 37, 61, 25, 56, -33, 65, 35, 38, -39, -45, -39, -42, -36, 77, -41, 32, 32, -20, 53, -42, -47, 96, 35, 58, 61, 109, -57, 132, -55, 109, -48, 56, 43, -121, -63, -72, 71, -109, -69, 56
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA346476(n) = (n+n-A250469(n));
    v346477 = DirInverseCorrect(vector(up_to,n,A346476(n)));
    A346477(n) = v346477[n];

Formula

a(1) = 1; and for n > 2, a(n) = -Sum_{d|n, dA346476(n/d).
a(n) = A346478(n) - A346476(n).
a(p) = A252748(p) = A346248(p) = -A346476(p) = -A062234(A000720(p)), for any prime p.

A346478 Sum of A346476 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 2, 0, -3, 1, 6, 0, -11, 0, 6, 6, -5, 0, -23, 0, -29, 6, 18, 0, -3, 9, 18, -15, -37, 0, -60, 0, -9, 18, 30, 18, 23, 0, 30, 18, 1, 0, -84, 0, -83, -61, 34, 0, -13, 9, -67, 30, -91, 0, 45, 54, 5, 30, 54, 0, 75, 0, 50, -77, -5, 54, -184, 0, -137, 34, -176, 0, -13, 0, 66, -55, -145, 54, -188, 0, -37, 49
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA346476(n) = (n+n-A250469(n));
    v346477 = DirInverseCorrect(vector(up_to,n,A346476(n)));
    A346477(n) = v346477[n];
    A346478(n) = (A346476(n)+A346477(n));

Formula

a(n) = A346476(n) + A346477(n).
a(1) = 2; and for n > 2, a(n) = -Sum_{d|n, 1A346476(n/d) * A346477(d).

A215808 Primes of the form 2*prime(k) - prime(k+1).

Original entry on oeis.org

3, 3, 17, 41, 47, 67, 151, 167, 199, 227, 251, 257, 347, 367, 557, 587, 601, 607, 641, 647, 727, 941, 971, 1051, 1091, 1097, 1117, 1181, 1217, 1277, 1361, 1427, 1447, 1447, 1487, 1487, 1499, 1607, 1697, 1741, 1747, 1741, 1777, 1877, 1901, 2087, 2143, 2281
Offset: 1

Views

Author

Zak Seidov, Sep 06 2012

Keywords

Comments

Corresponding values of k: 3, 4, 9, 15, 16, 21, 37, 40, 47, 51, 55, 56, 71, 74, 103 (A216075).

Examples

			k=3: 2*5-7=3, k=4: 2*7-11=3, k=9: 2*23-29=17.
		

Crossrefs

Programs

  • Mathematica
    pr=Prime[Range[1000]]; s=Select[2*Most[pr]-Rest[pr],PrimeQ]
    Select[2#[[1]]-#[[2]]&/@Partition[Prime[Range[500]],2,1],PrimeQ] (* Harvey P. Dale, Feb 25 2017 *)

A364411 a(n) = prime(n) + 2*prime(n+1).

Original entry on oeis.org

8, 13, 19, 29, 37, 47, 55, 65, 81, 91, 105, 119, 127, 137, 153, 171, 181, 195, 209, 217, 231, 245, 261, 283, 299, 307, 317, 325, 335, 367, 389, 405, 415, 437, 451, 465, 483, 497, 513, 531, 541, 563, 577, 587, 595, 621, 657, 677, 685, 695, 711, 721, 743, 765, 783
Offset: 1

Views

Author

Paul Curtz, Jul 23 2023

Keywords

Comments

All terms > 8 are odd.

Crossrefs

Cf. A000040, A001043, A062234, A094105, A100484, A191472 (first differences), A210497.

Programs

  • Mathematica
    ListConvolve[{2,1},Prime[Range[100]]] (* Paolo Xausa, Nov 02 2023 *)

Formula

a(n) = a(n-1) + A191472(n-1).
a(n) = A000040(n) + A100484(n+1).
a(n) = A000040(n+1) + A001043(n).

A194581 Primes prime(k) of the form (2*prime(k-1) + prime(k+1))/3.

Original entry on oeis.org

3, 7, 13, 19, 43, 103, 109, 193, 229, 313, 349, 401, 463, 491, 509, 643, 743, 761, 823, 859, 883, 911, 997, 1093, 1237, 1279, 1303, 1429, 1459, 1483, 1489, 1499, 1571, 1609, 1637, 1831, 1873, 1999, 2003, 2069, 2083, 2221, 2239, 2243, 2251, 2269, 2273, 2399
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 29 2011

Keywords

Comments

Primes prime(k) such that A062234(k) = A062234(k-1). - Thomas Ordowski, Jan 03 2016
Primes prime(k) such that A001223(k) = 2*A001223(k-1). - Robert Israel, Jan 03 2016
Or, primes which are at 1/3 of the distance between the previous and next prime. See A267291 for primes which are at 2/3 between their neighbors. - M. F. Hasler, Jan 12 2016

Examples

			a(1)=3 (=(2*2+5)/3), a(2)=7 (=(2*5+11)/3), a(3)=13 (=(2*11+17)/3).
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime, [2,seq(i,i=3..10^4,2)]):
    Gaps:= Primes[2..-1]-Primes[1..-2]:
    Primes[select(t -> 2*Gaps[t-1] = Gaps[t],[$2..nops(Gaps)])]; # Robert Israel, Jan 03 2016
  • Mathematica
    Table[(2 Prime[k - 1] + Prime[k + 1])/3, {k, 2, 360}] /. {Rational -> Nothing, n /; CompositeQ@ n -> Nothing} (* Michael De Vlieger, Jan 09 2016 *)
  • PARI
    for(k=2, 1000, q=2*prime(k-1)+prime(k+1); if(q%3==0 && isprime(q\3), print1(q\3, ", "))) \\ Colin Barker, Jun 27 2014
    
  • PARI
    A194581(n,show=0,o=2,g=0)={forprime(p=o+1,,g*2==(g=-o+o=p)||next; show&&print1(p-g",");n--||return(p-g))} \\ 2nd & 3rd optional args allow printing the whole list and using another starting value. - M. F. Hasler, Jan 12 2016

Extensions

Entries corrected by R. J. Mathar, Sep 30 2011

A207480 a(n) = (3/2)*(1+prime(n)) - prime(n+1).

Original entry on oeis.org

1, 2, 1, 5, 4, 8, 7, 7, 14, 11, 16, 20, 19, 19, 22, 29, 26, 31, 35, 32, 37, 37, 38, 46, 50, 49, 53, 52, 44, 61, 61, 68, 61, 74, 71, 74, 79, 79, 82, 89, 82, 95, 94, 98, 89, 95, 109, 113, 112, 112, 119, 112, 121, 124, 127, 134, 131, 136, 140, 133, 134, 151
Offset: 2

Views

Author

Zak Seidov, Feb 18 2012

Keywords

Comments

Conjecture: a(n) > 0 for all n (cf. A062234).
Note that a(1) = 3/2 hence offset is 2.
There are many cases of two successive terms of the same value, the first case is a(8)=a(9)=7: p(8)=19, p(9)=23, p(10)=29, (3/2)*(1+19)-23 = (3/2)*(1+23)-29 = 7.
The first case of 3 equal successive terms is a(691..693)=2588 for corresponding 4 consecutive primes primes p(691..694)= 5189, 5197, 5209, 5227.
The first case of 4 equal successive terms is a(12702874..12702878)=15579672 for corresponding 5 consecutive primes primes p(12702874..12702878)= 231159373,231159389,231159413,231159449,231159503.
Also of interest are cases with a(n)>a(n-1), e.g., a(27..29): 53, 52, 44 (the general tendency is, of course, increasing a(n) with n).

Crossrefs

Cf. A062234.

Programs

  • Maple
    a:= n-> 3*(1+ithprime(n))/2-ithprime(n+1):
    seq(a(n), n=2..63);  # Alois P. Heinz, Feb 14 2022
  • Mathematica
    (3(#[[1]]+1)/2)-#[[2]]&/@Partition[Prime[Range[2,70]],2,1] (* Harvey P. Dale, Jul 27 2016 *)
  • PARI
    a(n) = my(p=prime(n)); (3/2)*(1+p) - nextprime(p+1); \\ Michel Marcus, Feb 14 2022

A360510 a(n) = Product_{i=2..n} p(i) - p(n+1)^2, where p(i) is the i-th prime.

Original entry on oeis.org

-8, -22, -34, -16, 986, 14726, 254894, 4849316, 111545594, 3234845654, 100280243696, 3710369065724, 152125131761756, 6541380665832806, 307444891294242896, 16294579238595018884, 961380175077106315814, 58644190679703485487146, 3929160775540133527934504, 278970415063349480483702366
Offset: 1

Views

Author

N. J. A. Sloane, Feb 24 2023

Keywords

Comments

It is known that a(n) >= 0 for n >= 5.
Remember an empty product equals 1 by convention.
See A064819 for another version.

References

  • S. W. Golomb, Elementary Problem E3137, Amer. Math. Monthly, Proposed 93 (1986), p. 215; Solution and Editorial Comments, 94 (1987), 883-884.

Crossrefs

Programs

  • Mathematica
    FoldList[Times, 1, Most[#]] - #^2 & [Prime[Range[2, 25]]] (* Paolo Xausa, Nov 06 2024 *)
  • Python
    from sympy import prime, primorial
    def A360510(n): return (primorial(n)>>1)-prime(n+1)**2 # Chai Wah Wu, Feb 24 2023

A360511 a(n) = Product_{i=1..n} p(i) - p(n+1)^3, where p(i) is the i-th prime.

Original entry on oeis.org

-25, -119, -313, -1121, 113, 25117, 503651, 9687523, 223068481, 6469663439, 200560439477, 7420738065889, 304250263447703, 13082761331566207, 614889782588342533, 32589158477189839351, 1922760350154212412089, 117288381359406970682507, 7858321551080267055521179, 557940830126698960967026373
Offset: 1

Views

Author

N. J. A. Sloane, Feb 24 2023

Keywords

Comments

It is known that a(n) >= 0 for n >= 5.

References

  • S. W. Golomb, Elementary Problem E3137, Amer. Math. Monthly, Proposed 93 (1986), p. 215; Solution and Editorial Comments, 94 (1987), 883-884.

Crossrefs

Programs

  • Mathematica
    FoldList[Times, Most[#]] - Rest[#]^3 & [Prime[Range[25]]] (* Paolo Xausa, Nov 06 2024 *)
  • Python
    from sympy import prime, primorial
    def A360511(n): return primorial(n)-prime(n+1)**3 # Chai Wah Wu, Feb 24 2023

A110970 Squares of the form 2*prime(n) - prime(n+1).

Original entry on oeis.org

1, 9, 25, 81, 225, 361, 441, 1089, 1225, 2025, 2601, 3249, 3721, 5041, 7569, 7921, 12321, 13689, 15129, 18225, 21609, 30625, 31329, 38809, 42025, 47961, 53361, 59049, 65025, 77841, 88209, 91809, 94249, 99225, 110889, 123201, 126025, 131769
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 27 2005

Keywords

Comments

How is the upper limit for the search determined, which ensures that a square difference not previously made does not occur with much larger values? - Hugo Pfoertner, Mar 02 2020

Crossrefs

Contains n^2 for n in A086381.

Programs

  • Mathematica
    Union[Select[(2Prime[ # ] - Prime[ # + 1]) & /@ Range[13000], IntegerQ[Sqrt[ # ]] &]] (* Ray Chandler, Oct 07 2005 *)

Extensions

Corrected and extended by Ray Chandler, Oct 07 2005

A120633 Number of composite numbers bounded inclusively between p(n+1) and 2*p(n) where p(x) is prime(x).

Original entry on oeis.org

1, 1, 3, 2, 7, 7, 12, 12, 13, 22, 19, 25, 31, 31, 33, 37, 45, 44, 51, 56, 55, 61, 63, 66, 75, 80, 81, 87, 88, 82, 101, 103, 111, 105, 121, 120, 124, 132, 134, 140, 148, 142, 158, 158, 164, 156, 165, 182, 188, 188, 189, 199, 193, 205, 210
Offset: 1

Views

Author

Lekraj Beedassy, Jun 21 2006

Keywords

Programs

Formula

a(n) = A062234(n) - A070046(n) + 1 = A120632(n) - A040976(n+1).

Extensions

Definition clarified by Harvey P. Dale, Oct 01 2019
Previous Showing 21-30 of 33 results. Next