cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A086768 Number of conjugacy classes in the group GL(3,Z_n).

Original entry on oeis.org

1, 6, 24, 60, 120, 144, 336, 536, 714, 720, 1320, 1440, 2184, 2016, 2880, 4528, 4896, 4284, 6840, 7200, 8064, 7920, 12144, 12864, 15540, 13104, 19908, 20160, 24360, 17280, 29760, 37216, 31680, 29376, 40320, 42840, 50616, 41040, 52416, 64320, 68880, 48384, 79464, 79200, 85680, 72864
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 02 2003

Keywords

Crossrefs

Programs

  • Magma
    [Nclasses(GeneralLinearGroup(3, ResidueClassRing(n))) : n in [2..50]]; // Robin Visser, Aug 06 2023

Formula

For a prime p : a(p) = p*(p^2 - 1).

Extensions

More terms from Robin Visser, Aug 06 2023

A114077 Numbers k such that phi(k)*sigma(k) is a cube.

Original entry on oeis.org

1, 3, 119, 357, 2522, 6305, 6596, 6604, 7566, 18915, 19788, 19812, 20520, 24347, 24353, 26068, 26082, 28126, 47959, 58520, 64790, 65205, 70315, 73041, 73059, 73636, 75460, 78204, 84378, 143877, 156519, 164920, 175560, 194370, 210945, 212660, 220908, 226380
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			phi(357) * sigma(357) = 110592 = 48^3.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 119, p. 41, Ellipses, Paris 2008.

Crossrefs

Cf. A062354.

Programs

  • Magma
    [k:k in [1..230000]| IsPower(EulerPhi(k)*DivisorSigma(1,k),3)]; // Marius A. Burtea, Sep 19 2019
  • Mathematica
    Select[Range[10^5], IntegerQ @ Surd[EulerPhi[#] * DivisorSigma[1, #], 3] &] (* Amiram Eldar, Sep 19 2019 *)
  • PARI
    isok(n) = ispower(eulerphi(n)*sigma(n), 3); \\ Michel Marcus, Jan 22 2014
    

A114078 Numbers k such that phi(k)*sigma(k) is a fourth power.

Original entry on oeis.org

1, 170, 595, 714, 121056, 480441, 529620, 706063, 706237, 729752, 755972, 815654, 2162808, 2449062, 2827789, 2927848, 2957416, 2994681, 2995419, 3010227, 3019028, 3019772, 3080140, 3093860, 3103464, 3206364, 3213804
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			phi(595) * sigma(595) = 331776 = 24^4.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 170, p. 54, Ellipses, Paris 2008.

Crossrefs

Cf. A062354, subsequence of A011257.

Programs

  • Magma
    [k:k in [1..3300000]| IsPower(EulerPhi(k)*DivisorSigma(1,k),4)]; // Marius A. Burtea, Sep 19 2019
  • Mathematica
    Select[Range[3300000],IntegerQ[Power[EulerPhi[#] DivisorSigma[1,#], (4)^-1]]&]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    isok(n) = ispower(eulerphi(n)*sigma(n), 4); \\ Michel Marcus, Jan 09 2014
    

A131262 a(n) = least index k such that A130654(k) = n.

Original entry on oeis.org

1, 3, 14, 60, 248, 1008
Offset: 0

Views

Author

Alexander Adamchuk, Jun 24 2007

Keywords

Comments

Also a(n) = least index k such that A092505(k) = A002430(k) / A046990(k) = 2^n.
Note that
a(0) = 1 = 1 - 0 = 2^0 - 0;
a(1) = 3 = 4 - 1 = 2^2 - 1;
a(2) = 14 = 16 - 2 = 2^4 - 2;
a(3) = 60 = 64 - 4 = 2^6 - 4;
a(4) = 248 = 256 - 8 = 2^8 - 8.
Conjecture: a(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n).
If this conjecture is true the next term would be a(5) = 1008 = 1024 - 16 = 2^10 - 16.

Examples

			A130654(n) begins
{0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, ...}.
Thus a(0) = 1, a(1) = 3, a(2) = 14, a(3) = 60.
		

Crossrefs

Cf. A130654 = Exponent m such that 2^m = A092505(n) = A002430(n) / A046990(n). Cf. A092505 = A002430(n) / A046990(n), n>0. Cf. A002430 = Numerators in Taylor series for tan(x). Cf. A046990 = Numerators of Taylor series for log(1/cos(x)). Cf. A062354 = Sigma(n)*EulerPhi(n).

Formula

Conjecture: a(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n).

Extensions

a(5) = 1008 from Alexander Adamchuk, May 02 2010

A386401 a(n) = numerator(sigma(n)*phi(n)/n^2).

Original entry on oeis.org

1, 3, 8, 7, 24, 2, 48, 15, 26, 18, 120, 7, 168, 36, 64, 31, 288, 13, 360, 21, 128, 90, 528, 5, 124, 126, 80, 6, 840, 16, 960, 63, 320, 216, 1152, 91, 1368, 270, 448, 9, 1680, 32, 1848, 105, 208, 396, 2208, 31, 342, 93, 256, 147, 2808, 20, 576, 45, 320, 630, 3480, 56
Offset: 1

Views

Author

Stefano Spezia, Jul 20 2025

Keywords

Comments

a(n)/A386402(n) = sigma(n)*phi(n)*(1/n^2) is a multiplicative function since it is the product of three multiplicative functions.

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 5.3.21 on page 169.

Crossrefs

Cf. A386402 (denominators).

Programs

  • Mathematica
    a[n_]:=Numerator[DivisorSigma[1,n]EulerPhi[n]/n^2]; Array[a,60]
  • PARI
    a(n) = {my(f = factor(n)); numerator(sigma(f) * eulerphi(f) / n^2);} \\ Amiram Eldar, Jul 21 2025

Formula

From Amiram Eldar, Jul 21 2025: (Start)
Let f(n) = a(n)/A386402(n) = sigma(n)*phi(n)/n^2. Then:
f(n) = A062354(n)/n^2.
f(n) is multiplicative with f(p^e) = 1 - 1/p^(e+1).
Dirichlet g.f. of f(n): zeta(s) * zeta(s+1) * Product_{p prime} (1 - 1/p^(s+1) - 1/p^(s+2)+ 1/p^(2*s+2)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465). (End)

A015710 Least k >= 0 such that phi(n) * sigma(n) + k^2 is a perfect square, or -1 if impossible.

Original entry on oeis.org

0, 1, 1, -1, 1, 1, 1, 2, -1, 3, 1, 3, 1, 0, 2, 29, 1, -1, 1, 5, 4, 1, 1, 2, 26, 5, 3, 2, 1, 0, 1, 4, 1, 6, 2, 8, 1, 3, 5, 2, 1, 2, 1, 1, 8, 4, 1, 15, -1, 16, 0, 7, 1, 7, 6, 6, 6, 9, 1, 4, 1, 6, 10, 119, 8, 6, 1, 8, 1, 5, 1, 9, 1, 11, 9, 1, 4, 8, 1, 17, -1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A015713 (a(n) is zero), A062354 (phi(n)*sigma(n)).

Programs

  • Mathematica
    a[n_] := Module[{m = EulerPhi[n]*DivisorSigma[1, n]}, If[Mod[m, 4] == 2, -1, k = 0; While[!IntegerQ[Sqrt[m + k^2]], k++]; k]]; Array[a, 100] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    a(n) = {my(x = sigma(n)*eulerphi(n)); if ((x % 4) == 2, -1, my(k=0); while (! issquare(x+k^2), k++); k;);} \\ Michel Marcus, Dec 07 2018

Extensions

a(14), a(30), and a(51) corrected by Sean A. Irvine, Dec 06 2018
Entry revised by Amiram Eldar, Sean A. Irvine, and Michel Marcus, Dec 06 2018

A065148 Nonprimes m such that phi(m)*sigma(m) is divisible by m+1.

Original entry on oeis.org

15, 20, 35, 95, 104, 143, 207, 255, 287, 319, 323, 464, 539, 650, 890, 899, 1023, 1034, 1199, 1295, 1349, 1407, 1519, 1763, 1952, 2015, 2204, 2834, 2975, 3599, 4031, 4454, 4607, 5183, 6479, 9215, 9503, 9799, 10403, 11339, 11663, 12095, 12824, 13055
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Comments

Every prime p satisfies A000010(p)*A000203(p) == 0 (mod p+1).

Examples

			m = 95 is a term since phi(95) = 72, sigma(95) = 120, product = 8640, product/(m+1) = 90.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]*DivisorSigma[1, n]; If[IntegerQ[s/(n+1)]&&!PrimeQ[n], Print[n]], {n, 1, 100000}]
    Select[Range[14000],!PrimeQ[#]&&Divisible[EulerPhi[#]DivisorSigma[1,#],#+1]&] (* Harvey P. Dale, Jul 08 2017 *)
  • PARI
    { n=0; for (m=1, 10^9, s=eulerphi(m)*sigma(m); if (s%(m+1) == 0 && !isprime(m), write("b065148.txt", n++, " ", m); if (n==500, return)) ) } \\ Harry J. Smith, Oct 12 2009

Formula

A000010(m)*A000203(m) == 0 (mod m+1), m is composite.

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 12 2009
Definition clarified by Harvey P. Dale, Jul 08 2017

A065149 Composite numbers m such that phi(m)*sigma(m) is divisible by m-1.

Original entry on oeis.org

10, 33, 65, 136, 145, 261, 385, 451, 897, 946, 1281, 1441, 1665, 1729, 2241, 2353, 3585, 5185, 6721, 7201, 8380, 8911, 8961, 11521, 11782, 12673, 12801, 17101, 18241, 20737, 25201, 26625, 26677, 26937, 29697, 29953, 30721, 30889, 32896
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Examples

			m=136, phi(136)=64, sigma(136)=270, product=17280, quotient=128; for primes the formula holds.
		

Crossrefs

Programs

  • GAP
    Filtered([2..40000],m->Phi(m)*Sigma(m) mod (m-1)=0 and not IsPrime(m)); # Muniru A Asiru, Jun 18 2018
  • Maple
    with(numtheory): select(m->modp(phi(m)*sigma(m),m-1)=0 and not isprime(m),[$2..40000]); # Muniru A Asiru, Jun 18 2018
  • Mathematica
    Do[s=EulerPhi[n]*DivisorSigma[1, n]; If[IntegerQ[s/(n-1)]&&!PrimeQ[n], Print[n]], {n, 1, 100000}]
  • PARI
    { n=0; for (m=2, 10^9, s=eulerphi(m)*sigma(m); if (s%(m-1) == 0 && !isprime(m), write("b065149.txt", n++, " ", m); if (n==500, return)) ) } \\ Harry J. Smith, Oct 12 2009
    

Formula

(A000010(m)*A000203(m)) mod (m-1) = 0, m is composite.

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 12 2009

A065550 a(n) = floor(sqrt(phi(w)*sigma(w)+w^2)), where w=10^n.

Original entry on oeis.org

13, 136, 1391, 14030, 140865, 1411444, 14128309, 141352267, 1413868217, 14140409111, 141412724154, 1414170403052, 14141919829640, 141420277272713, 1414208167563878, 14142108649717545, 141421221367320690, 1414212888023339560, 14142132251982630599, 141421339378569021517
Offset: 1

Views

Author

Labos Elemer, Nov 13 2001

Keywords

Comments

a(n) tends to sqrt(2)*(10^n) when n->oo.

Crossrefs

Programs

  • Maple
    a:= n -> floor(sqrt(2*100^n - 20^n/5 - 50^n/2 + 10^n/10)):
    map(a, [$1..100]); # Robert Israel, Dec 03 2024
  • Mathematica
    a[n_] := Floor[Sqrt[EulerPhi[10^n] * DivisorSigma[1, 10^n] + 100^n]]; Array[a, 20] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    a(n) = my(w=10^n); sqrtint(eulerphi(w)*sigma(w)+w^2); \\ Michel Marcus, Mar 23 2020
    
  • Python
    from sympy import integer_nthroot, totient as phi, divisor_sigma as sigma
    def isqrt(n): return integer_nthroot(n, 2)[0]
    def a(n): w = 10**n; return isqrt(phi(w)*sigma(w, 1) + w**2)
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jun 12 2022

Formula

a(n) = floor(sqrt(A062354(w) + A000290(w))), where w=10^n.
a(n) = floor(10^n * sqrt(2 - 5^(-n-1) - 2^(-n-1) + 10^(-n-1))). - Robert Israel, Dec 03 2024

Extensions

Corrected and extended by Michel Marcus, Jun 12 2022

A065558 Let G_n be the group of invertible 2 X 2 matrices mod n (sequence A000252). a(n) is the maximal degree of an irreducible representation of G_n.

Original entry on oeis.org

1, 2, 4, 6, 6, 8, 8, 12, 12, 12, 12, 24, 14, 16, 24, 24, 18, 24, 20, 36, 32, 24, 24, 48
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 29 2001

Keywords

Comments

a(n) is multiplicative and for an odd prime p : a(p) = p + 1 . The number of irreducible representations of G_n is in sequence A062354.
Conjecture: a(2n) = 2*A001615(n). - Ralf Stephan, Mar 26 2004

Crossrefs

Previous Showing 21-30 of 43 results. Next