cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A153825 Sum of proper divisors minus the number of proper divisors of n!.

Original entry on oeis.org

0, 0, 0, 3, 29, 225, 1669, 14245, 118705, 1118001, 11705019, 144091717, 1738439017, 24817157329, 355309322689, 5378578597729, 86081749391905, 1570394279028289, 28281459220178401, 572031558109560385, 11458497230555053681
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Comments

a(n) is the sum of proper divisors minus the number of proper divisors of factorial number A000142(n).

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,Factorial(n)) - Factorial(n) - (DivisorSigma(0,Factorial(n))-1): n in [0..20]]; // Vincenzo Librandi, Aug 31 2016
    
  • Maple
    with(numtheory): seq(sigma(factorial(n))-factorial(n)-tau(factorial(n))+1, n = 0 .. 22); # Emeric Deutsch, Jan 07 2009
  • Mathematica
    Table[DivisorSigma[1,n!]-n!-(DivisorSigma[0,n!]-1),{n,0,20}] (* Harvey P. Dale, Jan 14 2012 *)
  • PARI
    a(n) = (sigma(n!) - n!) - (numdiv(n!) - 1); \\ Michel Marcus, Aug 31 2016

Formula

a(n) = A153824(n) - A153823(n) = A152770(A000142(n)).

Extensions

Extended by Emeric Deutsch, Jan 07 2009

A167368 a(n) = sigma((n!!)!).

Original entry on oeis.org

1, 1, 3, 12, 159120, 6686252969760, 89050715142739003008099466232718435351438398888454549774336000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1,#!!! ]&,7,1]
  • PARI
    A167368(n)=sigma( prod(k=0,n\2-1,n-2*k) ! )  \\ M. F. Hasler, Feb 07 2011

Formula

a(n) = A000203(A161563(n)).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 12 2022

A366758 a(n) is the sum of the divisors of n!+1.

Original entry on oeis.org

3, 3, 4, 8, 31, 133, 832, 5113, 41044, 388800, 3958704, 39916802, 518682390, 6302045232, 90968651712, 1332614649600, 22844265373440, 356226551466344, 7504470340300800, 123358411682195904, 2432902126073962432, 52279222588118377280, 1175121515279802150144
Offset: 0

Views

Author

Sean A. Irvine, Oct 20 2023

Keywords

Examples

			a(5) = 133 because the divisors of 5!+1 are {1, 11, 121}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](n!+1):
    seq(a(n), n=0..30);
  • Mathematica
    DivisorSigma[1,Range[0,25]!+1] (* Paolo Xausa, Oct 21 2023 *)
  • Python
    from math import factorial
    from sympy import divisor_sigma
    def A366758(n): return divisor_sigma(factorial(n)+1) # Chai Wah Wu, Oct 20 2023

Formula

a(n) = sigma(n!+1) = A000203(A038507(n)).

A061555 Integer part of sigma(n!)/n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Labos Elemer, May 17 2001

Keywords

Comments

With increasing n, a(n) goes to infinity (proof in Sierpiński).
From Bernard Schott, Oct 03 2022: (Start)
It seems that sigma(n!)/n! is an integer only for n = 0, 1, 3, 5 and corresponding values are 1, 1, 2, 3.
For m >= 2, the smallest integer n such that a(n) = m is A061556(m). (End)

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 6, p. 169, Warsaw, 1964.

Crossrefs

Programs

  • Mathematica
    Table[Floor[DivisorSigma[1, n!]/n!], {n, 0, 100}] (* Wesley Ivan Hurt, Apr 16 2024 *)
  • PARI
    { for (n=0, 1000, write("b061555.txt", n, " ", sigma(n!)\n!) ) } \\ Harry J. Smith, Jul 24 2009

Formula

a(n) = floor(sigma(n!)/n!) = floor(A062569(n)/A000142(n)).

Extensions

Terms corrected for an offset of 0 by Harry J. Smith, Jul 24 2009

A062008 Number of divisors of (n!)!, or A000197.

Original entry on oeis.org

1, 1, 2, 30, 242880, 23565900177211392000, 2773739201349556936377871973938118055565107020522751759201737480601600000000000000
Offset: 0

Views

Author

Jason Earls, Jul 04 2001

Keywords

Crossrefs

Programs

  • Magma
    [NumberOfDivisors(Factorial(Factorial(n))): n in [0..7]]; // Vincenzo Librandi, Nov 09 2014
  • Maple
    with(numtheory): A062008:=n->tau((n!)!): seq(A062008(n), n=0..6); # Wesley Ivan Hurt, Nov 08 2014
  • Mathematica
    Table[DivisorSigma[0, (n!)!], {n, 0, 6}] (* Wesley Ivan Hurt, Nov 08 2014 *)
  • PARI
    for(n=0,6,print(numdiv(n!!)))
    
  • PARI
    { for (n=0, 7, write("b062008.txt", n, " ", numdiv(n!!)) ) } \\ [Harry J. Smith, Jul 29 2009]
    

A064138 Sum of non-unitary divisors of n!.

Original entry on oeis.org

0, 0, 0, 24, 144, 1398, 11184, 97200, 973296, 10950696, 131408352, 1593191808, 22304685312, 333297226080, 5103130001760, 81686161277280, 1470350902991040, 26490792085668288, 529815841713365760, 10635027891469974720
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Examples

			For n = 6, 6! = 720, the sum of its 30 divisors is 2418, the sum of the 8 unitary divisors is 1020, so the remaining 22 divisors give a(6) = 1398.
		

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^e + 1; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n!]) - Times @@ f2 @@@ fct; a[1] = 0; Array[a, 20] (* Amiram Eldar, Apr 01 2024 *)
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { n=0; f=1; for (n=1, 100, f*=n; write("b064138.txt", n, " ", sigma(f) - usigma(f)); ) } \\ Harry J. Smith, Sep 08 2009

Formula

a(n) = sigma(n!) - usigma(n!) = A000203(n!) - A034448(A000142(n)) = A062569(n) - A034448(n!) = A048105(n!).

Extensions

Term corrected and more terms added by Harry J. Smith, Sep 08 2009

A073081 Greatest k such that k! divides sigma(n!).

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 4, 6, 6, 2, 4, 4, 4, 7, 7, 7, 7, 4, 9, 7, 8, 8, 11, 8, 8, 10, 10, 9, 10, 13, 14, 13, 6, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 12, 8, 11, 11, 12, 19, 21, 16, 16, 16, 14, 14, 12, 16, 16, 16, 16, 16, 16, 22, 21, 21, 21, 19, 19, 20, 20, 20, 20, 22, 21, 21, 19, 14
Offset: 1

Views

Author

Benoit Cloitre, Aug 17 2002

Keywords

Comments

sum(k=1,n,a(k)) seems to be asymptotic to C*n^2 with 1/20 < C < 1/10.

Crossrefs

Cf. A062569 (sigma(n!)).

Programs

  • PARI
    a(n) = my(m=1, s=sigma(n!)); for (k=1, n, if ((s % k!) == 0, m = max(m, k))); m; \\ Michel Marcus, Dec 05 2019

A078118 n+1 does not divide sigma(n!).

Original entry on oeis.org

1, 6, 22, 25, 28, 30, 40, 42, 46, 52, 58, 60, 68, 70, 72, 78, 87, 88, 96, 98, 102, 105, 106, 112, 114, 122, 126, 128, 130, 133, 138, 145, 148, 150, 156, 162, 166, 172, 178, 182, 190, 192, 196, 198, 212, 213, 217, 218, 222, 225, 226, 228, 232, 238, 240, 250, 262
Offset: 1

Views

Author

Benoit Cloitre, Dec 05 2002

Keywords

Crossrefs

Cf. A062569.

Programs

  • Mathematica
    Select[Range[300], Not[Divisible[DivisorSigma[1, #!], # + 1]] &] (* Vaclav Kotesovec, Feb 16 2019 *)

Formula

a(n) seems to be asymptotic to c*n with c=4.8....

A116906 Sum of squares of divisors of n!.

Original entry on oeis.org

1, 1, 5, 50, 850, 22100, 806806, 40340300, 2584263500, 209609328500, 20993420690550, 2561197324247100, 368819285671473000, 62699278564150410000, 12294076739210974071000, 2766341857504878226501200
Offset: 0

Views

Author

Jonathan Vos Post, Mar 15 2006

Keywords

Comments

See also A062569 sigma_1(n!).

Examples

			a(0) = 1 because only 1 divides 0! = 1.
a(1) = 1 because only 1 divides 1! = 1.
a(2) = 5 because both 1 and 2 divide 2! = 2 and 1^2 + 2^2 = 5.
a(3) = 50 because 1, 2, 3, 6 divide 3! = 6 and 1^2 + 2^2 + 3^2 + 6^2 = 50.
a(4) = 850 because 1, 2, 3, 4, 6, 8, 12, 24 divide 4! = 24 and 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 8^2 + 12^2 + 24^2 = 850.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[2, n!]; Array[a, 16, 0] (* Amiram Eldar, Aug 01 2019 *)
  • Sage
    [sigma(factorial(n),2)for n in range(0,16)] # Zerinvary Lajos, Jun 13 2009

Formula

a(n) = A001157(A000142(n)).
a(n) = Sum_{d|n!} d^2.
a(n) = sigma_2(n!).
a(n) = zeta(2) * n!^2 * (1 + O(log(n)/n)) (De Koninck and Verreault, 2024. p. 54, Theorem 4.5). - Amiram Eldar, Dec 10 2024

A262812 Values of n such that sigma(n!) mod sigma(n) is not 0.

Original entry on oeis.org

4, 6, 9, 10, 16, 25, 45, 48, 50, 64, 86, 122, 192, 256, 289, 314, 326, 448, 562, 578, 706, 722, 729, 794, 842, 1226, 1346, 1458, 1514, 1681, 1754, 1922, 2186, 2401, 2566, 2601, 2916, 3362, 3481, 3866, 3986, 4046, 4096, 4274, 4852, 5043, 5186, 5414
Offset: 1

Views

Author

Altug Alkan, Oct 03 2015

Keywords

Comments

Subsequence of A002808.
Motivation was the investigation of sum of divisors of n! in terms of sum of divisors of n.
Obviously, a(n) cannot be a prime number, although it can be a semiprime number.
Is this sequence infinite?

Examples

			a(1) = 4 because sigma(4!) mod sigma(4) = 60 mod 7 = 4.
a(2) = 6 because sigma(6!) mod sigma(6) = 2418 mod 12 = 6.
a(3) = 9 because sigma(9!) mod sigma(9) = 1481040 mod 13 = 2.
		

Crossrefs

Programs

  • PARI
    for(n=1, 1e30, if( sigma(n!) % sigma(n) != 0 , print1(n", ")))

Formula

A066247(a(n)) = 1.
A000005(a(n)) > 2.
A001222(a(n)) > 1.
Previous Showing 11-20 of 25 results. Next